Module 2: Coming up...

- Pre-class quiz #3: due Wednesday September 23rd at 19:00.
 - Assigned reading for the quiz:
 - Epp, 5th edition: 2.5
 - Epp, 4th edition: 2.5 plus
 - \textcolor{red}{\url{http://en.wikipedia.org/wiki/Binary_numeral_system}}
 - \textcolor{red}{\url{http://www.ugrad.cs.ubc.ca/~cs121/current/handouts/signed-binary-decimal-conversions.html}}
 - Assignment #1 is due Monday September 28th at 19:00.

Module 2: Coming up...

- Pre-class quiz #4: tentatively due Monday September 28th at 19:00.
 - Assigned reading for the quiz:
 - Epp, 5th or 4th edition: 2.3
 - Epp, 3rd edition: 1.3
 - Rosen, 6th edition: 1.5 up to the bottom of page 69.
 - Rosen, 7th edition: 1.6 up to the bottom of page 75.

Module 2: Coming up...

- Pre-class quiz #2: very well done except for question 3:
 - Which of the following has the same meaning as $p \rightarrow \neg q$?
 - a) Anytime that p is true, q must be false.
 - b) p can not be true unless q is false.
 - c) q can not be false unless p is true.
 - d) if p is true then q is false.
 - e) q and p can never have the same truth value (both true or both false).
Module 2: Conditionals and Logical Equivalences

- By the start of this class you should be able to
 - Translate back and forth between simple natural language statements and propositional logic, now with conditionals and biconditionals.
 - Evaluate the truth of propositional logical statements that include conditionals and biconditionals using truth tables.
 - Given a propositional logic statement and an equivalence rule, apply the rule to create an equivalent statement.

- By the end of this unit, you should be able to
 - Explore alternate forms of propositional logic statements by application of equivalence rules, especially in order to simplify complex statements or massage statements into a desired form.
 - Evaluate propositional logic as a “model of computation” for combinational circuits, including at least one explicit shortfall (e.g., referencing gate delays, fan-out, transistor count, wire length, instabilities, shared sub-circuits, etc.).

Module Outline:

- Logic vs Everyday English
- Logical Equivalence Proofs
- Multiplexers
- More exercises
Module 2.1: Logic vs Everyday English

- Be careful!
- The meaning of if p then q in propositional logic is not quite the same as in normal language.
- Suppose that I state

 \[p: \text{If you rob a bank, then you will go to jail} \]
- You need to distinguish between
 - The truth value of \(p \) (whether or not I lied).
 - The truth value of the conclusion (whether or not you will go to jail).

If you rob a bank, will you go to jail?

a) Yes
b) No
c) Maybe

If you go to jail, have you robbed a bank?

a) Yes
b) No
c) Maybe

Module 2: Conditionals and Logical Equivalences

- Module Outline:
 - Logic vs Everyday English
 - Logical Equivalence Proofs
 - Multiplexers
 - More exercises
Module 2.2: Logical Equivalence Proofs

How do we write a logical equivalence proof?
- We state the theorem we want to prove.
- We indicate the beginning of the proof by **Proof:**
- We start with one side and work towards the other,
 - one step at a time,
 - without forgetting to justify each step
 - usually we will simplify the more complicated proposition, instead of trying to complicate the simpler one.
- We indicate the end of the proof by QED or □

Example: prove that \((\neg a \land b) \lor a \equiv a \lor b\)

Proof:
\[
(\neg a \land b) \lor a \equiv a \lor (\neg a \land b) \quad \text{commutative law}
\equiv (a \lor \neg a) \land (a \lor b) \quad \text{distributive law}
\equiv \quad \text{__________} \quad \text{identity law}
\equiv a \lor b
\]

What is missing?
- a) \((a \lor b)\)
- b) \(F \land (a \lor b)\)
- c) \(a \land (a \lor b)\)
- d) Something else
- e) Not enough info to tell

Worksheet: prove the following
- \(p \land (p \lor r \lor s) \equiv \neg p \rightarrow (p \land r \land s)\)
- \(\neg p \land q \equiv (\neg p \lor q) \land \neg (\neg q \lor p)\)
Module 2: Conditionals and Logical Equivalences

- Module Outline:
 - Logic vs Everyday English
 - Logical Equivalence Proofs
 - Multiplexers
 - More exercises

Module 2.3: Multiplexers

- Propositional Logic is not a perfect model of how gates work.
- To understand why, we will look at a multiplexer.
 - A circuit that chooses between two or more values.
 - In its simplest form, it takes 3 inputs
 - An input a, an input b, and a control input $select$.
 - It outputs a if $select$ is false, and b if $select$ is true.

Truth table:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$select$</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Here is one possible implementation:

Let us see why this may not work as we expect...
Module 2.3: Multiplexers

- Fact: gates are not instantaneous
 - If we change the input of a gate at time $t = 0$.
 - The output of the gate will only reflect the change some time later.
 - This time gap is called the gate delay.

Suppose a, b, select are initially T
Assume the gate delay is 10ns

How long will it take before output reflects any changes in a, b, select?

a) 10ns
b) 20ns
c) 30ns
d) 40ns
e) It may never happen.

We switch select to F at time 0ns. At time 5ns:
Module 2.3: Multiplexers

- At time 10ns:

- At time 20ns:

 - Note: the output is now F

- At time 30ns:

 - Note: the output is now T again.

- So the output changed from T (old output) to F and then to T (new output).

- This is called an instability.

- The cause of the problem:
 - the information from select travels on two different paths to the output
 - these paths contain different numbers of gates
 - so the shorter path may affect the output until the information on the longer path catches up.
Module 2.3: Multiplexers

- Which one(s) of the following operation may cause an instability?

a) Changing \(a \) or \(b \) only
b) Changing \(\text{select} \), when at exactly one of \(a, b \) is F
c) Changing \(\text{select} \), when both \(a, b \) are F
d) Both (a) and (b)
e) None of (a), (b) or (c).

Here is a multiplexer that avoid the instability:

Module 2: Conditionals and Logical Equivalences

- Module Outline:

 - Logic vs Everyday English
 - Logical Equivalence Proofs
 - Multiplexers
 - More exercises

Module 2.4: More exercises

- Consider the code:

  ```
  if target = value then
    if lean-left-mode = true then
      call the go-left() routine
    else
      call the go-right() routine
  else if target < value then
    call the go-left() routine
  else
    call the go-right routine
  ```

- Let \(gl \) mean “the go-left() routine is called”. Complete the following:

 \(gl \leftrightarrow \)
Module 2.4: More exercises

Consider:
The Java [String] equals() method returns true if and only if the argument is not null and is a String object that represents the same sequence of characters as this object.

- Let
 - n1: the string is null
 - n2: the argument is null
 - nt: the method returns true
 - s: the two objects are strings that represent the same sequence of characters.

Is the sentence logically equivalent to \(nt \leftrightarrow (n1 \land n2) \lor s \)? Why or why not?

Prove:
\[
(a \land \neg b) \lor (\neg a \land b) \equiv (a \lor b) \land \neg (a \land b)
\]