Module 11: Models of Computation

By the start of class, you should be able to:
- Define the terms domain, co-domain, range, image, and pre-image
- Use appropriate function syntax to relate these terms (e.g., $f : A \to B$ indicates that f is a function mapping domain A to co-domain B).
- Determine whether $f : A \to B$ is a function given a definition for f as an equation or arrow diagram.

Final Exam Information

- Final exam details:
 - 2h 20 minutes + upload time
 - Covers everything discussed in the course
 - includes labs, although you don't need to memorize all of the solutions.
 - Slightly more emphasis on later topics.
 - Approximately 50 minutes take home test #3 plus 90 minutes evenly distributed + 15 minutes upload.
 - You can use anything that is available on the course web site, canvas or in your textbook.
 - No other help allowed.

- Announcements:
 - Final exam: Saturday December 12th, 8:30.
 - Office Hours:
 - In the week before the exam.
 - The schedule will be posted on piazza.
Module 11: Models of Computation

- CPSC 121: the **BIG** questions:
 1. How can we build a computer that is able to execute a user-defined program?
- We are finally able to answer this question.
 - Our answer builds up on many of the topics you learned about in the labs since the beginning of the term.
- More generally:
 - What can we compute?
 - Are there problems we can not solve?

Module 11: Models of Computation

- Module Summary
 - **(a bit of) Computing history.**
 - A working computer.
 - DFAs and regular expressions.
 - Computations that we are unable to perform.
 - Appendix: working computer details.

Module 11.2: (a bit of) Computing history

- Historical notes:
 - Early 19th century:
 - Joseph Marie Charles dit Jacquard used punched paper cards to program looms.

Module 11.2: (a bit of) Computing history

- Historical notes (early 19th century continued):
 - Charles Babbage designed (1837) but could not build the first programmable (mechanical) computer, based on Jacquard's idea.
 - http://www.computerhistory.org/babbage/
Module 11.2: (a bit of) Computing history

- Historical notes (continued):
 - 1941: Konrad Zuse builds the first electromechanical computer.
 - It had binary arithmetic, including floating point.
 - It was programmable.
 - 1946: the ENIAC was the first programmable electronic computer.
 - It used decimal arithmetic.
 - Reprogramming meant rewiring.
 - All its programmers were women.

Module 11.2: (a bit of) Computing history

- Historical notes (mid 20th century, continued)
 - The first stored-program electronic computers were developed from 1945 to 1950.
 - Programs and data were stored on punched cards.

Module 11.2: (a bit of) Computing history

- A quick roadmap through our courses:
 - CPSC 121: learn about gates, and how we can use them to design a circuit that executes very simple instructions.
 - CPSC 213: learn how the constructs available in languages such as Racket, C, C++ or Java are implemented using these simple instructions.
 - CPSC 313: learn how we can design computers that execute programs efficiently and meet the needs of modern operating systems.

Module 11: Models of Computation

- Module Summary
 - (a bit of) Computing history.
 - A working computer.
 - DFAs and regular expressions.
 - Computations that we are unable to perform.
 - Appendix: working computer details.
Module 11.3: A working computer

- Von-Neumann architecture

 Memory (contains both programs and data).

 - Control Unit
 - Arithmetic & Logic Unit
 - CPU (Central Processing Unit)
 - Input/Output

- Memory
 - Contains both instructions and data.
 - Divided into a number of memory locations
 - Think of positions in a list: (list-ref mylist pos)
 - Or in an array: myarray[pos] or arraylist: arrayl.get(pos).

- Arithmetic and Logic Unit
 - Performs arithmetic and logical operations (+, -, *, /, and, or, etc).

- Control Unit
 - Decides which instructions to execute.
 - Executes these instructions sequentially.
 - Not quite true, but this is how it appears to the user.

- Memory
 - Each memory location contains a fixed number of bits.
 - Most commonly this number is 8.
 - Values that use more than 8 bits are stored in multiple consecutive memory locations.
 - Characters use 8 bits (ASCII) or 16/32 (Unicode).
 - Integers use 32 or 64 bits.
 - Floating point numbers use 32, 64 or 80 bits.
Module 11.3: A working computer

- Our working computer:
 - Implements the design presented in the textbook by Bryant and O'Hallaron (used for CPSC 213/313).
 - A small subset of the IA32 (Intel 32-bit) architecture.
 - It has
 - 12 types of instructions.
 - One program counter register (PC) contains the address of the next instruction.
 - 8 general-purpose 32-bit registers each of them contains one 32 bit value.
 - stores a single multi-bit value.
 - used for values that we are currently working with.

Module 10.2: Implementing a working computer

- Example instruction 3: jge $1000
 - This is a conditional jump instruction.
 - It checks to see if the result of the last arithmetic or logic operation was zero or positive (Greater than or Equal to 0).
 - If so, the next instruction is the instruction stored in memory address 1000 (hexadecimal).
 - If not, the next instruction is the instruction that follows the jge instruction.

- Sample program:
 - irmovl 0x3,%eax
 - irmovl 0x35, %ebx
 - subl %eax, %ebx
 - halt

Module 11.3: A working computer

- Example instruction 1: irmovl 0x1A, %ecx
 - This instruction stores a constant in a register.
 - In this case, the value 1A (hexadecimal) is stored in %ecx.

- Example instruction 2: subl %eax, %ebx
 - The subl instruction subtracts its arguments.
 - The names %eax and %ebx refer to two registers.
 - This instruction takes the value contained in %eax, subtracts it from the value contained in %ebx, and stores the result back in %ebx.
Module 11.3: A working computer

- How does the computer know which instruction does what?
 - Each instruction is a sequence of 8 to 48 bits.
 - Some of the bits tell it which instruction it is.
 - Other bits tell it what operands to use.
- These bits are used as *select* inputs for several multiplexers.

Example 1: `subl %eax, %ebx`
- Represented by `6103` (hexadecimal)
- `%ebx`
- `%eax`
- subtraction
- arithmetic or logic operation (the use of “6” to represent them instead of 0 or F or any other value is completely arbitrary).

Example 2: `irmovl 0xfacade, %ecx`
- Represented by `30F100FACADE` (hexadecimal)
- `$0xfacade`
- `%ecx`
- no register here
- ignored
- move constant into a register
Module 11.3: A working computer

- How is an instruction executed?
 - This CPU divides the execution into 6 stages:
 - **Fetch**: read instruction and decide on new PC value
 - **Decode**: read values from registers
 - **Execute**: use the ALU to perform computations
 - **Memory**: read data from or write data to memory
 - **Write-back**: store value(s) into register(s).
 - **PC update**: store the new PC value.
 - Not all stages do something for every instruction.

Module 10.2: Implementing a working computer

- Example 1: `irmovl 0xfacade, %ecx`
 - Fetch: current instruction \rightarrow 30F100FACADE
 - next PC value \leftarrow current PC value + 6
 - Decode: nothing needs to be done
 - Execute: valE \leftarrow valC
 - Memory: nothing needs to be done
 - Write-back: R[ecx] \leftarrow valE
 - PC update: PC \leftarrow next PC value

- Example 2: `subl %eax, %ebx`
 - Fetch: current instruction \leftarrow 6103
 - next PC value \leftarrow current PC value + 2
 - Decode: valA \leftarrow value of %eax
 - valB \leftarrow value of %ebx
 - Execute: valE \leftarrow valB - valA
 - Memory: nothing needs to be done.
 - Write-back: %ebx \leftarrow valE
 - PC update: PC \leftarrow next PC value

Module 11: Models of Computation

- Module Summary
 - (a bit of) Computing history.
 - A working computer.
 - **DFAs and regular expressions**.
 - Computations that we are unable to perform.
 - Appendix: working computer details.
Module 11.1: DFAs and regular expressions

- Sets and functions can be used to define many useful structures.
- Example: we can define valid DFAs formally: a DFA is a 5-tuple \((\Sigma, S, s_0, F, \delta)\) where
 - \(\Sigma\) is a finite set of characters (input alphabet).
 - \(S\) is a finite set of states.
 - \(s_0 \in S\) is the initial state.
 - \(F \subseteq S\) is the set of accepting states.
 - \(\delta: S \times \Sigma \rightarrow S\) is the transition function.

DFAs and Regular expressions.
- In lab 7, you wrote regular expressions matching the patterns we gave you.
- Regular expressions are very useful when you need to read and validate input.
- Many modern programming languages provide functions that allow you to manipulate regular expressions:
 - Dr. Racket, Java, Python, Perl, etc.

How does a program determine if an input string matches a regular expression?
- **Theorem**: every set of strings matched by a regular expression can be recognized by a DFA.
- Hence the functions provided by the language build a DFA corresponding to the regular expression.
- And then this DFA is given the input string one character at a time.

This result goes both ways:
- if a set of strings is accepted by a DFA, then there is a regular expression for this set of strings.
- In this sense, DFAs are exactly as “powerful” as regular expressions (no more, no less).

How do we build the DFA given a regular expression?
- First we build a NFA (non-deterministic finite-state automaton) for the regular expression.
- Then we convert the NFA into a DFA.
Module 11.1: DFAs and regular expressions

What is a NFA?
- It is like a DFA but
 - There can be multiple arrows with the same label leaving from a state
 - There can be arrows labelled ε that we can take without reading the next input character.
 - So we can sometimes choose which state to go to.
- A NFA accepts a string if at least one sequence of choices leads to an accepting state.

Example:

![NFA Diagram](image)

What regular expression corresponds to the strings that this NFA accepts?

- a) $\varepsilon | ab$
- b) $\varepsilon | abaa$
- c) $\varepsilon | ab | abaa$
- d) $\varepsilon | ab | (aba)+a$
- e) None of the above.

Theorem: we can transform every regular expression into a NFA with
- Exactly one accepting state
- No arcs pointing to the initial state
- No arcs leaving the accepting state

Fact: every regular expression can be rewritten to use only the following:
- The empty string ε.
- Individual characters
- The operators $|$, $*$, and string concatenation.
Exercise: rewrite the following expressions to use only the options listed on the previous slide:
- a?
- a+
- a{3,5}
- \d

Proof: by induction on the structure of the regular expression.

Base cases:
- The expression that matches the empty string:

\[\epsilon \]

- The expression that matches no string:

\[\epsilon \]

Base cases (continued)
- The expression that matches a single character a:

\[a \]

Induction step:
- Consider a regular expression with \(n \) characters.
- Suppose the theorem holds for every regular with fewer than \(n \) characters.
- We consider three cases: the “last” operator could be |, string concatenation or *
Module 11.1: DFAs and regular expressions

- Induction step (continued and finished):
 - The expression \(E_1E_2 \) where \(E_1, E_2 \) are regular expressions:
 - The expression \(E^* \) where \(E \) is a regular expression:

\[\begin{align*}
E_1 & \rightarrow E_2 \\
E & \rightarrow E
\end{align*}\]

Example: \((a|b)^*c\)

\[\begin{align*}
a & \rightarrow \text{node} \\
b & \rightarrow \text{node} \\
a | b & \rightarrow \text{node} \\
(a | b)^* & \rightarrow \text{node}
\end{align*}\]

How do we transform a NFA into a DFA?

- A DFA that reads a string with \(n \) characters ends up in exactly one state.
- A NFA that reads a string with \(n \) characters may end up in many different stages.
- Can we figure out which states?

Which state(s) will the following NFA end up in after reading the string \(ab \)?

- a) S1 only
- b) S6 only
- c) S3 or S7
- d) S4 or S6
- e) None of the above
Module 11.1: DFAs and regular expressions

- So we build the DFA as follows:
 - The DFA has one state for every \textit{subset} of the states of the NFA (so \(2^n\) states in total).
 - If the DFA is in state \(\{S_{i1}, S_{i2}, \ldots, S_{ik}\}\), and it sees a character \(x\), then the new state is the state that contains every NFA state that we can get to from one of \(S_{i1}, S_{i2}, \ldots, S_{ik}\) upon reading \(x\).
 - A state of the DFA is accepting if it contains the accepting state of the NFA.

Module 11: Models of Computation

- Module Summary
 - (a bit of) Computing history.
 - A working computer.
 - DFAs and regular expressions.
 - \textbf{Computations that we are unable to perform}.
 - Appendix: working computer details.

Module 11.4: Computations we are unable to perform

- We have discussed several models of computation in the course:
 - Combinational circuits
 - Sequential circuits (the working computer).
 - DFAs

- One thing computer scientists (we) like to know about their (our) computational models is:
 - What can they do?
 - What can they not do?
Module 11.4: Computations we are unable to perform

- Example: DFAs
 - Intuition:
 - DFAs have no memory apart from the current state.
 - So a DFA with \(n \) states can only “count” up to \(n \) before it gets confused.
 - How do we formalize this?
 - We need to define a set \(L \) of strings (language).
 - And show that no DFA can accept exactly the strings in \(L \).

- Definition: we denote by \(a^n b^n \) a string that consists of
 - \(n \) copies of the letter \(a \), followed by
 - \(n \) copies of the letter \(b \).
 - The integer \(n \) is not fixed and known ahead of time.

- Theorem: no DFA can recognize the language \(\{ a^n b^n | n \in \mathbb{Z}^+ \} \).

Proof: we use a proof by contradiction.
- Suppose there is such a DFA. This DFA has \(k \) states for some positive integer \(k \).
 - Now look at what happens when the DFA is looking at the input \(a^k b^k \).
 - While it's reading the input string, it goes through a number of states:
 - \(q_0 \) (initial state)
 - \(q_1 \) (after reading the string \(a \))
 - \(q_2 \) (after reading the string \(aa \))
 - ...
 - \(q_k \) (after reading the string \(a^k \)).
 - The DFA only has \(k \) different states, so two of \(q_0, q_1, \ldots, q_k \) must be the same state. Let us call these two \(q_i \) and \(q_j \), with \(i < j \).
Observation 1: If the DFA is in state \(q_i \) and it sees \(j - i \) copies of \(a \) then it ends up in state

a) \(q_0 \)
b) \(q_i \)
c) \(q_k \)
d) Some other state.

Observation 2: If the DFA is in state \(q_i \) and it sees \(k - i \) copies of \(a \) then it ends up in state

a) \(q_0 \)
b) \(q_i \)
c) \(q_k \)
d) Some other state.

What happens if we give the DFA the string \(a^{k+(j-i)}b^k \)?
While reading the first \(i \) copies of \(a \), it goes through states \(q_0 .. q_i \).
Then it reads the next \(j - i \) copies of \(a \), and ends up in state \(q_i \) again.
From \(q_i \) it reads the next \(k - i \) copies of \(a \), and ends up in state \(q_k \).
Then it reads the \(k \) copies of \(b \), and terminates in the same state it terminated when it was reading \(a^kb^k \).

But \(a^kb^k \) should be accepted, and \(a^{k+(j-i)}b^k \) should be rejected!
So the DFA will make a mistake on one of these two strings, which means it's not recognizing \(\{ a^n b^n \mid n \in \mathbb{Z}^+ \} \) correctly.
This contradictions our initial assumption, and hence no DFA can recognize this language. QED
Module 11.4: Computations we are unable to perform

- Sequential circuits/Java/Racket are more powerful than DFAs.
 - For instance, you can easily write a Racket function or a Java method that will recognize \(\{ a^n b^n \mid n \in \mathbb{Z}^+ \} \).
- Can they solve every problem?
 - No: there are problems that cannot be solved.
 - \textbf{Halting Problem}: given a program \(P \) and an input \(I \), will \(P \) halt if we run it on input \(I \)?

Module 11.4: Computations we are unable to perform

- \textbf{Theorem}: It is not possible to write a program that solves the halting problem.

- \textbf{Proof 1}: proof by video:
 - https://www.youtube.com/watch?v=92WHN-pAFCs

Module 11.4: Computations we are unable to perform

- \textbf{Proof 2}: we use a proof by contradiction.
 - Suppose this program exists.
 - Let us call it \texttt{will-halt} (Racket) or \texttt{willHalt} (Java).
 - We use this function or method to write the following function or method:

\begin{verbatim}
Racket version:
(define (paradox input)
 (if (will-halt input input)
 (paradox input) ; go into an infinite recursion
 true))

Java version:
public static void main(String[] args) {
 if (willHalt(args[0], args[0]))
 while(true) ;
 else
 return;
}
\end{verbatim}
What happens when we call this program with itself as input?

- If it halts, then `will-halt/willHalt` returns true, and so it won’t halt.
- But if it doesn’t halt, then `will-halt/willHalt` returns false, and so it will halt.

So whether the program halts or not, we end up with a contradiction.

Therefore this program does not exist. QED
Module 11.5: Appendix

Instruction types:

- register/memory transfers:
 - rmmovl rA, D(rB) \(M[D + R[rB]] \leftarrow R[rA] \)
 - Example: rmmovl %edx, 20(%esi)
 - mrmmovl D(rB), rA \(R[rA] \leftarrow M[D + R[rB]] \)

Other data transfer instructions

- rrmovl rA, rB \(R[rB] \leftarrow R[rA] \)
- irmovl V, rB \(R[rB] \leftarrow V \)

Arithmetic instructions

- addl rA, rB \(R[rB] \leftarrow R[rB] + R[rA] \)
- subl rA, rB \(R[rB] \leftarrow R[rB] - R[rA] \)
- andl rA, rB \(R[rB] \leftarrow R[rB] \land R[rA] \)
- xorl rA, rB \(R[rB] \leftarrow R[rB] \oplus R[rA] \)

Unconditional jumps

- jmp Dest \(PC \leftarrow Dest \)

Conditional jumps

- jle Dest \(PC \leftarrow Dest \) if last result \(\leq 0 \)
- jl Dest \(PC \leftarrow Dest \) if last result \(< 0 \)
- je Dest \(PC \leftarrow Dest \) if last result \(= 0 \)
- jne Dest \(PC \leftarrow Dest \) if last result \(\neq 0 \)
- jge Dest \(PC \leftarrow Dest \) if last result \(\geq 0 \)
- jg Dest \(PC \leftarrow Dest \) if last result \(> 0 \)

Conditional moves

- cmovle rA, rB \(R[rB] \leftarrow R[rA] \) if last result \(\leq 0 \)
- cmovl rA, rB \(R[rB] \leftarrow R[rA] \) if last result \(< 0 \)
- cmove rA, rB \(R[rB] \leftarrow R[rA] \) if last result \(= 0 \)
- cmovne rA, rB \(R[rB] \leftarrow R[rA] \) if last result \(\neq 0 \)
- cmovge rA, rB \(R[rB] \leftarrow R[rA] \) if last result \(\geq 0 \)
- cmovg rA, rB \(R[rB] \leftarrow R[rA] \) if last result \(> 0 \)
Module 11.5: Appendix

Instruction types:
- Procedure calls and return support
 - call Dest \(R[\%esp] \leftarrow R[\%esp]-4\); \(M[R[\%esp]] \leftarrow PC\); \(PC \leftarrow Dest\);
 - ret \(PC \leftarrow M[R[\%esp]]; R[\%esp] \leftarrow R[\%esp]+4\)
 - pushl rA \(R[\%esp] \leftarrow R[\%esp]-4\); \(M[R[\%esp]] \leftarrow R[rA]\)
 - popl rA \(R[rA] \leftarrow M[R[\%esp]]; R[\%esp] \leftarrow R[\%esp]+4\)
- Others
 - halt
 - nop

Instructions format:
- Arithmetic instructions:
 - addl \(\rightarrow fn = 0\) subl \(\rightarrow fn = 1\)
 - andl \(\rightarrow fn = 2\) xorl \(\rightarrow fn = 3\)
- Conditional jumps and moves:
 - jump \(\rightarrow fn = 0\) jle \(\rightarrow fn = 1\)
 - jl \(\rightarrow fn = 2\) je \(\rightarrow fn = 3\)
 - jne \(\rightarrow fn = 4\) jge \(\rightarrow fn = 5\)
 - je \(\rightarrow fn = 6\)