Pre-class quiz #9 is due Monday November 9th at 19:00
- Epp, 5th or 4th edition: 12.2, pages 791 to 795.
- Epp, 3rd edition: 12.2, pages 745 to 747, 752 to 754
- Rosen, 6th edition: 12.2 pages 796 to 798, 12.3
- Rosen, 7th edition: 13.2 pages 858 to 861, 13.3

Pre-class quiz #10 is tentatively due Monday November 16th at 19:00.
- Textbook sections:
 - Epp, 5th or 4th edition: 5.1 to 5.4
 - Epp, 3rd edition: 4.1 to 4.4
 - Rosen, 6th edition: 4.1, 4.2
 - Rosen, 7th edition: 5.1, 5.2

By the start of class, you should be able to, for each proof strategy below:
- Identify the form of statement the strategy can prove.
- Sketch the structure of a proof that uses the strategy.

Strategies:
- constructive/non-constructive proofs of existence
- generalizing from the generic particular
- direct proof (antecedent assumption)
Module 8: Proof Techniques (part 1)

- Strategies (continued):
 - indirect proofs by contrapositive and contradiction
 - proof by cases.

Module 8: Proof Techniques (part 1)

- Quiz 8 open-ended question: when should you switch strategies?
 - When you are stuck.
 - When the proof is going around in circles.
 - When the proof is getting too messy.
 - When it is taking too long.
 - Through experience (how do you get that?)

Module 8: Proof Techniques (part 1)

- CPSC 121: the BIG questions:
 - How can we convince ourselves that an algorithm does what it's supposed to do?
 - We need to prove its correctness.
 - How do we determine whether or not one algorithm is better than another one?
 - Sometimes, we need a proof to convince someone that the number of steps of our algorithm is what we claim it is.

Module 8: Proof Techniques (part 1)

- By the end of this module, you should be able to:
 - Devise and attempt multiple different, appropriate proof strategies for a given theorem, including
 - all those listed in the "pre-class" learning goals
 - logical equivalences,
 - rules of inference,
 - universal modus ponens/tollens,
 - For theorems requiring only simple insights beyond strategic choices or for which the insight is given/hinted, additionally prove the theorem.
Module 8: Proof Techniques (part 1)

- Module Summary
 - Techniques for **direct proofs**.
 - Existential quantifiers.
 - Universal quantifiers.
 - Dealing with nested quantifiers.
 - Indirect proofs: contrapositive and contradiction
 - Choosing a proof strategy
 - Additional Examples

Module 8.1: Direct Proofs

- Direct Proofs:
 - We start with some facts (premises, hypotheses)
 - They are known or assumed to be true.
 - We move **one** step at a time towards the conclusion.
 - There are two general forms of statements:
 - Those that start with an existential quantifier.
 - Those that start with a universal quantifier.
 - We use different techniques for them.

Module 8.1.1: Direct Proofs (existential)

- **Form 1**: \(\exists x \in D, P(x) \)

- To prove this statement is true, we must
 - Find a value of \(x \) (a “witness”) for which \(P(x) \) holds.
 - So the proof will look like this:
 - Choose \(x = \text{<some value in } D\)>
 - Verify that the \(x \) we chose satisfies the predicate.

- Example: there is a prime number \(x \) such that \(3^x + 2 \) is not prime.

- How do we translate **There is a prime number \(x \) such that \(3^x + 2 \) is not prime** into predicate logic?
 - a) \(\forall x \in \mathbb{Z}^+, \text{Prime}(x) \land \neg \text{Prime}(3^x + 2) \)
 - b) \(\exists x \in \mathbb{Z}^+, \text{Prime}(x) \land \neg \text{Prime}(3^x + 2) \)
 - c) \(\forall x \in \mathbb{Z}^+, \text{Prime}(x) \rightarrow \neg \text{Prime}(3^x + 2) \)
 - d) \(\exists x \in \mathbb{Z}^+, \text{Prime}(x) \rightarrow \neg \text{Prime}(3^x + 2) \)
 - e) \(\forall x \in P, \neg \text{Prime}(3^x + 2) \) where \(P \) is the set of all primes
Module 8.1.1: Direct Proofs (existential)

- So the proof goes as follows:
 Proof:
 Choose \(x = \)
 It is prime because its only factors are 1 and
 Now \(3^x + 2 = \) and
 Hence \(3^x + 2 \) is not prime.
 QED.

Worksheet problem 1

Theorem: There are perfect squares and perfect cubes larger than 1 that are also Fibonacci numbers.

Module 8.1.2: Direct Proofs (universal)

- Form 2: \(\forall x \in D, P(x) \)
 To prove this statement is true, we must
 - Show that \(P(x) \) holds no matter how we choose \(x \).
 - So the proof will look like this:
 Consider an unspecified element \(x \) of \(D \)
 Verify that the predicate \(P \) holds for this \(x \).
 Note: the only assumption we can make about \(x \) is the fact that it belongs to \(D \). So we can only use properties common to all elements of \(D \).
Example: every non-anonymous Racket function is at least 12 characters long.

The proof goes as follows:

Proof:
Consider an unspecified Racket function \(f \)
This function

Therefore \(f \) is at least 12 characters long.

QED

Terminology: the following statements all mean the same thing:

- Consider an unspecified element \(x \) of \(D \)
- Without loss of generality consider a valid element \(x \) of \(D \).
- Suppose \(x \) is a particular but arbitrarily chosen element of \(D \).
- Let \(x \) be an arbitrary element of \(D \).
- Let \(x \) be any element of \(D \).

Why can we write Assume that \(P(x) \) is true?

- Because these are the only cases where \(Q(x) \) matters.
- Because \(P(x) \) is preceded by a universal quantifier.
- Because we know that \(P(x) \) is true.
- Both (a) and (c)
- Both (b) and (c)
Module 8.1.2: Direct Proofs (universal)

- Example: prove that
 \(\forall n \in \mathbb{N}, \ n \geq 1024 \rightarrow 10n \leq n\log_2 n \)
- Proof:
 Consider an unspecified natural number \(n \).
 Assume that \(n \geq 1024 \).
 Then ...

Module 8.1.1: Direct Proofs (existential)

Worksheet problems 2 and 3

Theorem: Squares of odd integers are congruent to 1 modulo 4.

Theorem: For all subsets \(A, B, C \) of an arbitrary universal set \(U \), \(A \subseteq C \rightarrow A \subseteq B \cup C \)

Module 8.1.2: Direct Proofs (universal)

- Other interesting techniques for direct proofs 😊
 - Proof by intimidation
 - Proof by lack of space (Fermat's favorite!)
 - Proof by authority
 - Proof by never-ending revision

- For the full list, see:

Module 8: Proof Techniques (part 1)

- Module Summary
 - Techniques for direct proofs.
 - Existential quantifiers.
 - Universal quantifiers.
 - Dealing with nested quantifiers.
 - Indirect proofs: contrapositive and contradiction
 - Choosing a proof strategy
 - Additional Examples
Module 8.2: Dealing with nested quantifiers

- How do we deal with theorems that involve multiple quantifiers?
 - Start the proof from the outermost quantifier.
 - Work our way inwards.

Example 1:
- For any two distinct real numbers, there is a third real number that is larger than one but smaller than the other.
- Written using predicate logic:

The proof goes as follows:

Proof:
Consider two unspecified real numbers \(x \) and \(y \).
Assume without loss of generality that \(x < y \).
Choose \(z = \)
Now prove that \(x < z < y \).

Example 2:
- For every positive integer \(n \), there is a prime \(p \) that is larger than \(n \).
- Written using predicate logic:

The proof goes as follows:

Proof:
Consider an unspecified positive integer \(n \).
Choose \(p \) as follows:
Now prove that \(p > n \) and that \(p \) is prime.
Details (part 1)

How do we choose \(p \)?

First we compute \(x = n! + 1 \) (where \(n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n \)).

By the fundamental theorem of arithmetic, \(x \) can be written as a product of primes:

\[x = p_1 \cdot p_2 \cdot \ldots \cdot p_t \]

We use any one of these as \(p \) (say \(p_1 \)). The integer \(p \) is a prime by definition.

Details (part 2).

Now we need to prove that \(p > n \).

Which of the following should we prove?

a) \(\forall i \in \mathbb{Z}^+, i \leq n \rightarrow i \) divides \(n! \)

b) \(\exists i \in \mathbb{Z}^+, i \leq n \land i \) does not divide \(x \)

c) \(\forall i \in \mathbb{Z}^+, i \leq p \rightarrow i \) does not divide \(x \)

d) \(\forall i \in \mathbb{Z}^+, (i > 1 \land i \leq n) \rightarrow i \) does not divide \(x \)

e) None of the above.

Details (part 3).

Now the proof:

Pick an unspecified integer \(2 \leq i \leq n \).

Observe that

\[
\frac{x}{i} = \frac{n! + 1}{i} = \frac{n!}{i} + \frac{1}{i} = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (i-1) \cdot (i+1) \cdot \ldots \cdot n + \frac{1}{i}
\]

Since \(1 \cdot 2 \cdot 3 \cdot \ldots \cdot (i-1) \cdot (i+1) \cdot \ldots \cdot n \) is an integer, but \(1/i \) is not an integer, this means that \(x/i \) is not an integer.

Hence \(i \) does not divide \(x \).

Therefore no integer from \(2 \) to \(n \) is a factor of \(x \). Since \(p \) is a factor of \(x \), this means that \(p > n \).

Worksheet problems 4 and 5

Theorem: Every positive, odd integer is the difference between two perfect squares.

\[n^2 + 3n + 5 \in O(n^2) \]

Recall: \(f \in O(g) \) if \(\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \rightarrow f(n) \leq cg(n). \)
Module 8: Proof Techniques (part 1)

- Module Summary
 - Techniques for direct proofs.
 - Existential quantifiers.
 - Universal quantifiers.
 - Dealing with nested quantifiers.
 - Indirect proofs: contrapositive and contradiction
 - Choosing a proof strategy
 - Additional Examples

Module 8.3: Indirect Proofs

- Consider the following theorem:
 If the square of a positive integer n is even, then n is even.

- How can we prove this?
 - Let's try a direct proof.

 Consider an unspecified integer n.
 Assume that n^2 is even.
 So $n^2 = 2k$ for some (positive) integer k.
 Hence $n = \sqrt{2k}$.
 Then what?

- What is the relationship between
 If a positive integer n is odd, then its square is odd.
 and
 If the square of a positive integer n is even, then n is even.
 and hence

 Therefore n^2 is odd.
Module 8.3: Indirect Proofs

- **We would normally write the proof of the original theorem like this:**

 Proof: we will prove the contrapositive, that is, that if a positive integer \(n \) is odd, then its square is odd. Consider an unspecified positive integer \(n \).

 ...

- **Another proof technique:** *Proofs by contradiction.*

 - **To prove:**

 Premise 1

 ...

 Premise \(n \)

 \(\therefore \) Conclusion

 - We assume Premise 1, ..., Premise \(n \), \(\sim \)Conclusion and then derive a contradiction (\(p \land \sim p \), \(x \) is odd \(\land \) \(x \) is even, \(x < 5 \land x > 10 \), etc).

 - We then conclude that Conclusion is true.

Module 8.3: Indirect Proofs

- **Why are proofs by contradiction a valid proof technique?**
 - We proved

 Premise 1 \(\land \) ... \(\land \) Premise \(n \) \(\land \) \(\sim \)Conclusion \(\rightarrow \) F

 - This is only true if

 Premise 1 \(\land \) ... \(\land \) Premise \(n \) \(\land \) \(\sim \)Conclusion \(\equiv \) F

 - If

 Premise 1 \(\land \) ... \(\land \) Premise \(n \) \(\equiv \) F

 then

 Premise 1 \(\land \) ... \(\land \) Premise \(n \) \(\rightarrow \) Conclusion

 is true.

 - Otherwise

 Premise 1 \(\land \) ... \(\land \) Premise \(n \) \(\equiv \) T

 but

 Premise 1 \(\land \) ... \(\land \) Premise \(n \) \(\land \) \(\sim \)Conclusion \(\equiv \) F

 therefore

 \(\sim \)Conclusion \(\equiv \) F which means that Conclusion \(\equiv \) T

 and so

 Premise 1 \(\land \) ... \(\land \) Premise \(n \) \(\rightarrow \) Conclusion

 is true.
Module 8.3: Indirect Proofs

- Example:
 Not every CPSC 121 student got an above average grade on midterm 1.
- What are:
 - The premise(s)?
 - The negated conclusion?
- Let us prove this theorem together.

Module 8.1.1: Direct Proofs (existential)

Worksheet problems 6 and 7

Theorem: For all real numbers \(x \) and \(y \), if \(x \) is a rational number, and \(y \) is an irrational number, then \(x+y \) is irrational.

Theorem: There do not exist two positive integers \(x \) and \(y \) such that \(x^2 - 3xy - 10y^2 = 9 \).

Module 8: Proof Techniques (part 1)

Module Summary
- Techniques for direct proofs.
 - Existential quantifiers.
 - Universal quantifiers.
- Dealing with nested quantifiers.
- Indirect proofs: contrapositive and contradiction
- Choosing a proof strategy
- Additional Examples

Module 8.4: Choosing a proof strategy

- How should you tackle a proof?
 - Try the simpler methods first:
 - Witness proofs (if applicable).
 - Direct proofs.
 - Indirect proof using the contrapositive.
 - Proof by contradiction.
 - If you don't know if the theorem is true:
 - Alternate between trying to prove and disprove it.
 - Use a failed attempt at one to help with the other.
Module 8.4: Choosing a proof strategy

How should you tackle a proof (continued)?

- If you get stuck, try looking backwards from the conclusion you want.
 - But don't forget the argument must eventually be written from the premises to the conclusion (not the other way around).
- Try to derive all new facts you can derive from the premises without worrying about whether or not they will help.
- If you are really stuck, ask for help!

Module 8: Proof Techniques (part 1)

- Module Summary
 - Techniques for direct proofs.
 - Existential quantifiers.
 - Universal quantifiers.
 - Dealing with nested quantifiers.
 - Indirect proofs: contrapositive and contradiction
 - Additional Examples

Module 8.5: Additional examples

- Additional theorems you might wish to prove:
 - Prove that for every positive integer x, either \sqrt{x} is an integer, or it is irrational.
 - Prove that any circuit consisting of NOT, OR, AND and XOR gates can be implemented using only NOR gates.
Module 8.5: Additional examples

- Additional theorems you might wish to prove:
 - Prove that if \(a, b \) and \(c \) are integers, and \(a^2 + b^2 = c^2 \), then at least one of \(a \) and \(b \) is even. Hint: use a proof by contradiction, and show that \(4 \) divides both \(c^2 \) and \(c^2 - 2 \).
 - Prove that there is a positive integer \(c \) such that \(x + y \leq c \cdot \max\{ x, y \} \) for every pair of positive integers \(x \) and \(y \).