Module 3: Representing Values in a Computer

By the start of this class you should be able to:
- Convert unsigned integers from decimal to binary and back.
- Take two's complement of a binary integer.
- Convert signed integers from decimal to binary and back.
- Convert integers from binary to hexadecimal and back.
- Add two binary integers.

Module 3: Coming up...

- Pre-class quiz #4 is due Wednesday September 30th at 19:00.
 - Assigned reading for the quiz:
 - Epp, 4th edition: 2.3
 - Epp, 3rd edition: 1.3
 - Rosen, 6th edition: 1.5 up to the bottom of page 69.
 - Rosen, 7th edition: 1.6 up to the bottom of page 75.

- Pre-class quiz #5 is tentatively due Monday October 5th at 19:00.
 - Assigned reading for the quiz:
 - Epp, 4th edition: 3.1, 3.3
 - Epp, 3rd edition: 2.1, 2.3
 - Rosen, 6th edition: 1.3, 1.4
 - Rosen, 7th edition: 1.4, 1.5
Module 3: Representing Values

- Quiz 3 feedback:
 - Well done overall.
 - Only one question had an average below 90%:
 What is the decimal value of the signed 6-bit binary number 101110?
 - Answer:

- By the end of this module, you should be able to:
 - Critique the choice of a digital representation scheme, including describing its strengths, weaknesses, and flaws (such as imprecise representation or overflow), for a given type of data and purpose, such as fixed-width binary numbers using a two’s complement scheme for signed integer arithmetic in computers and hexadecimal for human inspection of raw binary data.

Module 3: Representing Values

- CPSC 121: the BIG questions:
 - We will make progress on two of them:
 - How does the computer (e.g., Dr. Racket) decide if the characters of your program represent a name, a number, or something else? How does it figure out if you have mismatched " " or ()?
 - How can we build a computer that is able to execute a user-defined program?
Module 3: Representing Values

- **Motivating examples:**
 - Understand and avoid cases like those at: http://www ima.umn.edu/~arnold/455.f96/disasters.html
 - Death of 28 people caused by failure of an anti-missile system, caused in turn by the misuse of one representation for fractions.
 - Explosion of a $500 million space vehicle caused by failure of the guidance system, caused in turn by misuse of a 16 bit signed binary value.
 - We will discuss both of the representations that caused these catastrophes.

Module 3.1: Unsigned and signed binary integers

- **Notice the similarities:**

<table>
<thead>
<tr>
<th>Number</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>9</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>b_3</th>
<th>b_2</th>
<th>b_1</th>
<th>b_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Definitions:**
 - An **unsigned integer** is one we have decided will only represent integer values that are 0 or larger.
 - A **signed integer** is one we have decided can represent either a positive value or a negative one.
 - A sequence of bits
 - is intrinsically neither signed nor unsigned (nor anything else).
 - it's us who give it its meaning.
Module 3.1: Unsigned and signed binary integers

- Unsigned integers review: the binary value
 \[b_{n-1} b_{n-2} \ldots b_2 b_1 b_0 \]
 represents the integer
 \[b_{n-1} 2^{n-1} + b_{n-2} 2^{n-2} + \ldots + b_2 2^2 + b_1 2^1 + b_0 \]
 or written differently
 \[\sum_{i=0}^{n-1} b_i 2^i \]

- We normally use base 10 instead of 2, but we could use 24 [clocks!] or 13 (maybe…) or any other value.

- “Magic” formula to negate a signed integer:
 - Replace every 0 bit by a 1, and every 1 bit by a 0.
 - Add 1 to the result.
 - This is called two's complement.

 Why does it make sense to negate a signed binary integer this way?

Module 3.1: Unsigned and signed binary integers

- For 3-bit integers, what is 111 + 1? Hint: think of a 24 hour clock.
 a) 110
 b) 111
 c) 1000
 d) 000
 e) Error: we can not add these two values.

- Using 3 bits to represent integers
 - let us write the binary representations for zero to eleven.

\[\begin{array}{c|c}
0 & 000 \\
\end{array} \]
Module 3.1: Unsigned and signed binary integers

- Using 3 bits to represent integers
 - let us write the binary representations for zero to eleven.

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
000 & 001 & 010 & 011 \\
\end{array}
\]
Module 3.1: Unsigned and signed binary integers

- Using 3 bits to represent integers
 - let us write the binary representations for zero to eleven.
Module 3.1: Unsigned and signed binary integers

- Using 3 bits to represent integers
 - let us write the binary representations for zero to eleven.

Using 3 bits to represent integers

- let us write the binary representations for zero to eleven.

now let’s add the binary representation for zero to minus eight.
Module 3.1: Unsigned and signed binary integers

- Using 3 bits to represent integers
 - let us write the binary representations for zero to eleven.
 - now let’s add the binary representation for zero to minus eight.
Module 3.1: Unsigned and signed binary integers

- Using 3 bits to represent integers
 - let us write the binary representations for zero to eleven.
 - now let’s add the binary representation for zero to minus eight.
Module 3.1: Unsigned and signed binary integers

- What do you notice?

 - Taking two’s complement is the same as computing $2^n - x$ because

 $$2^n - x = (2^n - 1 - x) + 1$$

 Add 1

 Flip bits from 0 to 1 and from 1 to 0

Module 3.1: Unsigned and signed binary integers

- What does a sequence of bit actually mean?

 - If we know we won't need negative values: **unsigned**

 \[
 \begin{array}{ccccccccccc}
 -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 & 000
 \end{array}
 \]

 - If we need negative values: **signed**

 \[
 \begin{array}{ccccccccccc}
 -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 & 000
 \end{array}
 \]

- One way to convert a positive decimal integer x to binary?

 - Divide x by 2 and write down the remainder

 - The remainder is 0 if x is even, and 1 if x is odd.

 - Repeat this until the quotient is 0.

 - Write down the remainders from right (first one) to left (last one).

 - Example: convert 729 to binary.

- What do we do if x is negative?

- Summary questions:

 - With n bits, how many distinct values can we represent?

 - What are the smallest and largest n-bit unsigned binary integers?

 - What are the smallest and largest n-bit signed binary integers?
Module 3.1: Unsigned and signed binary integers

- More summary questions:
 - Why are there more negative n-bit signed integers than positive ones?
 - How do we tell quickly if a signed binary integer is negative, positive, or zero?
 - There is one signed n-bit binary integer that we should not try to negate.
 - Which one?
 - What do we get if we try negating it?

Module 3: Representing Values

- Summary
 - Unsigned and signed binary integers.
 - Modular arithmetic.
 - Characters.
 - Real numbers.
 - Hexadecimal.

Module 3.2: Modular arithmetic

- First open-ended question from quiz #3:
 - Imagine the time is currently 15:00 (3:00PM, that is). How can you quickly answer the following two questions without using a calculator:
 - What time was it 8 * 21 hours ago?
 - What time will it be 13 * 23 hours from now?
Module 3.2: Modular arithmetic

- Modular arithmetic (continued):
 - We use the smallest non-negative element of the class as its representative. With $m = 5$:
 - $[0] = \{ \ldots, -15, -10, -5, 0, 5, 10, 15, \ldots \}$
 - $[1] = \{ \ldots, -14, -9, -4, 1, 6, 11, 16, \ldots \}$
 - etc.
 - We write $x \mod m$ to denote the representative for the class that x belongs to.
 - $x \mod m$ is the remainder we get after dividing x by m.

Example:
27 mod 4 is 3 ($27 = 6 \times 4 + 3$).
What is 57 mod 8?
 a) 1
 b) 3
 c) 5
 d) 7

If x and y belong to the same class modulo m (have the same remainder) then we write $x \equiv y \mod m$.

Suppose that $x \equiv 34 \mod 6$. Which are possible values for x?
 a) 4, 17 and 28.
 b) 12, 28 and 38.
 c) 36, 72 and 216.
 d) 10, 16 and 52.

Fundamental Theorem of Modular Arithmetic:
- Suppose you want to compute $cx + d \mod m$
 - if $a \equiv c \mod m$ and $b \equiv d \mod m$ then $ax + b \equiv cx + d \mod m$
- This theorem means that it doesn’t matter if you
 (a) do a sequence of operations, and then take the remainder mod m at the end.
 (b) or take the remainder mod m every time you perform an operation in the sequence.
- Sequences of operations on integers do (b).
Module 3: Representing Values

- Summary
 - Unsigned and signed binary integers.
 - Modular arithmetic.
 - **Characters.**
 - Real numbers.
 - Hexadecimal.

Module 3.3: Characters

- How do computers represent characters?
 - It uses sequences of bits (like for everything else).
 - Integers have a “natural” representation of this kind.
 - There is no natural representation for characters.
 - So people created arbitrary mappings.

Module 3.3: Characters

- How do computers represent characters (continued)?
 - Examples:
 - EBCDIC: earliest, now used only for IBM mainframes.
 - ASCII: American Standard Code for Information Interchange
 - 7-bit per character, sufficient for upper/lowercase, digits, punctuation and a few special characters.
 - UNICODE:
 - 16 or 32 bits, extended ASCII for languages other than English

Module 3.3: Characters

- What does the 8-bit binary value 11111000 represent?
 - a) -8
 - b) The character ø
 - c) 248
 - d) More than one of the above
 - e) None of the above.
Module 3: Representing Values

- **Summary**
 - Unsigned and signed binary integers.
 - Modular arithmetic.
 - Characters.
 - **Real numbers**.
 - Hexadecimal.

Module 3.4: Real numbers

- **Can someone be 1/3rd Belgian?**
- **Here is a fun answer from this term:**
 - No, because you have to have two parents that have a fraction of an ethnicity and the denominator has to be a number that is a power of 2. You would need three parents for that to be possible. However, there is a medical procedure where you replace the nucleus of an egg with bad mitochondria into a nucleus-less egg with working mitochondria, which can then be fertilized with sperm. This procedure involves three people and if one of them is Scottish, then you can technically be one-third Scottish.

Module 3.4: Real numbers

- **Another answer from this term:**
 - It is possible for someone to be 50% Scottish by being the offspring of 1 Scottish person and 1 non-Scottish person. It is also possible for someone to be 25% Scottish by being the offspring of a parent who is 50% Scottish and another non-Scottish parent.

 Given that a person can be 50% or 25% Scottish, and that 33.33% is between the two, then it is possible that an offspring many generations down the line could be 33.33% Scottish by following this logic when selecting a partner:

 - If self is over 33.33% Scottish : procreate with a person who is 25% Scottish
 - If self is under 33.33% : procreate with a person who is 50% Scottish

 Repeat the process until an offspring is born who is 33.33% Scottish (probably over 10 generations down).

Module 3.4: Real numbers

- **An interesting older answer:**
 - Let's focus on Mom, suppose we are 1/3 Scottish, then your mom should be 2/3 Scottish and therefore your father is not Scottish. Given mom is 2/3 Scottish, then your grandparent should either be

 1) both 2/3 Scottish. But this will lead to infinite generations of 2/3 Scottish, which is impossible

 2) Grandma is 1/6 and grandfather is a pure Scottish. Then grandma's parent should now be 1/3 and not Scottish, then grandma's grand parent should now be 2/3 and not Scottish. Notice, this runs into a loop which is like you and your mom.

 Therefore, this is also an infinite loop and drives to the conclusion that we can't be one-third Scottish.
Module 3.4: Real numbers

- Here is an even older answer:
 - While debated, Scotland is traditionally said to be founded in 843AD, approximately 45 generations ago. Your mix of Scottish, will therefore be $n/2^{45}$; using $2^{45}/3$ (rounded to the nearest integer) as the numerator gives us $11728124029611/2^{45}$ which gives us approximately $0.333333333333342807236476801$ which is no more than $1/10^{13}$th away from $1/3$.

- Another old, interesting answer
 - In a mathematical sense, you can create $1/3$ using infinite sums of inverse powers of 2
 - $1/2$ isn't very close
 - $1/4$ isn't either
 - $3/8$ is getting there...
 - $5/16$ is yet closer, so is $11/32$, $21/64$, $43/128$ etc
 - $85/256$ is 0.33203125, which is much closer, but which also implies eight generations of very careful romance amongst your elders.
 - $5461/16384$ is 0.33331298828125, which is still getting there, but this needs fourteen generations and a heck of a lot of Scots and non-Scots.

Module 3.4: Real numbers

- Can someone be $1/3^{rd}$ Belgian?
 - Suppose we start with people who are either 0% or 100% Belgian.
 - After 1 generation, how Belgian can a child be?
 - After 2 generations, how Belgian can a grand-child be?
 - What about 3 generations?
 - What about n generations?

Module 3.4: Real numbers

- Numbers with fractional components in binary:
 - Example: $5/32 = 0.00101$
 - Which of the following values have a finite binary expansion?
 - a) $1/3$
 - b) $1/4$
 - c) $1/5$
 - d) More than one of the above.
 - e) None of the above.
Module 3.4: Real numbers

- Numbers with fractional components (cont):
 - In decimal:
 - \(\frac{1}{3} = 0.3333333333333333333333333333333333... \)
 - \(\frac{1}{4} = 0.25 \)
 - \(\frac{1}{5} = 0.2 \)
 - In binary:
 - \(\frac{1}{3} = \)
 - \(\frac{1}{4} = \)
 - \(\frac{1}{5} = \)

- Which fractions have a finite binary expansion?

Module 3.4: Real numbers

- How does Java represent values of the form \(\text{xxx.yyyy} \)?
 - It uses scientific notation
 - \(1724 = 0.1724 \times 10^4 \)
 - But in binary, instead of decimal.
 - \(1724 = 1.1010111100 \times 2^{1010} \)
 - Only the mantissa and exponent need to be stored.
 - The mantissa has a fixed number of bits (24 for float, 53 for double).

Module 3.4: Real numbers

- Scheme/Racket uses this for inexact numbers.

- Consequences:
 - Computations involving floating point numbers are imprecise.
 - The computer does not store 1/3, but a number that's very close to 1/3.
 - The more computations we perform, the further away from the “real” value we are.
 - Example: predict the output of:
 - \((* \ (\text{sqrt} \ 2) \ (\text{sqrt} \ 2)) \)

- Consider the following:
 - (define (addfractions x)
 (if (= x 1.0)
 0
 (+ 1 (addfractions (+ x #i0.1)))))

- What value will \(\text{(addfractions 0)} \) return?
 - a) 10
 - b) 11
 - c) Less than 10
 - d) More than 11
 - e) No value will be printed
Module 3: Representing Values

- Summary
 - Unsigned and signed binary integers.
 - Modular arithmetic.
 - Characters.
 - Real numbers.
 - Hexadecimal.

Module 3.5: Hexadecimal

- As you learned in CPSC 110, a program can be interpreted: another program is reading your code and performing the operations indicated.
- Compiled: the program is translated into machine language. Then the machine language version is executed directly by the computer.

What does a machine language instruction look like?

- It is a sequence of bits!
- Y86 example: adding two values.
 - In human-readable form: `addl %ebx, %ecx`.
 - In binary: `0110000000110001`.

Long sequences of bits are painful to read and write, and it's easy to make mistakes.

- Should we write this in decimal instead?
 - Decimal version: `24625`.
 - Problem: We can not tell what operation this is.

- Solution: use hexadecimal `6031`.
Module 3.5: Hexadecimal

- Another example:
 - Suppose we make the text in a web page use color 15728778.
 - What color is this?
 - Red leaning towards purple.
 - Written in hexadecimal: F00084