Perspective Projection

CPSC 314

The Rendering Pipeline
Homogeneous Coordinates

Homogeneous representation of points:
- Add an additional component \(w = 1 \) to all points.
- All multiples of this vector are considered to represent the same 3D point.
- All points are represented as column vectors.

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
= \begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
= \begin{bmatrix}
 x \cdot w \\
 y \cdot w \\
 z \cdot w \\
 w
\end{bmatrix} \forall w \neq 0
\]

Homogeneous Matrices

Affine Transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix}
= \begin{bmatrix}
 m_{1,1} & m_{1,2} & m_{1,3} & 0 \\
 m_{2,1} & m_{2,2} & m_{2,3} & 0 \\
 m_{3,1} & m_{3,2} & m_{3,3} & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
+ \begin{bmatrix}
 0 & 0 & 0 & t_x \\
 0 & 0 & 0 & t_y \\
 0 & 0 & 0 & t_z \\
 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Homogeneous Vectors

Representing vectors in homogeneous coordinates

- Column vectors with $w=0$

$$
T \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix} = \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & t_x \\ m_{2,1} & m_{2,2} & m_{2,3} & t_y \\ m_{3,1} & m_{3,2} & m_{3,3} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}
$$

Rendering Geometry in OpenGL

Example:

```c
glBegin( GL_TRIANGLES );
glColor3f( 1.0, 0.0, 0.0 );
glVertex3f( 1.0, 0.0, 0.0 );
glColor3f( 0.0, 0.0, 1.0 );
glVertex3f( 1.0, 0.0, 0.0 );
glVertex3f(0.0, 0.0, 0.0);
glEnd();
```
Matrix Operations in OpenGL

Specifying matrices (replacement)
- `glLoadIdentity()`
- `glLoadMatrixf(GLfloat *m) // 16 floats`

Specifying matrices (multiplication)
- `glMultMatrixf(GLfloat *m) // 16 floats`
- `glTranslatef(GLfloat x, GLfloat y, GLfloat z) // angle and axis`
- `glScalef(GLfloat x, GLfloat y, GLfloat z)`
- `glTranslatef(GLfloat x, GLfloat y, GLfloat z)`

Interpreting Composite Transformations

Interpretation 1: moving the coordinate system
- Read operations in forward order
  ```
  glTranslatef( 4, 3 );
  glRotatef( 30 );
  glTranslatef( -4, -3 );
  ```
Interpreting Composite Transformations

Interpretation 2: moving the object
- Read operations in reverse order
 - `glTranslatef(4, 3);`
 - `glRotatef(30);`
 - `glTranslatef(-4, -3);`

Matrix Stacks

```
D = C scale(2,2,2) trans(1,0,0)
```

```
glPushMatrix()
glPopMatrix()
```

```
D = C scale(2,2,2) trans(1,0,0)
```

```
DrawSquare()
glPushMatrix()
glScale3f(2,2,2)
glTranslatef3f(1,0,0)
DrawSquare()
glPopMatrix()
```
Transformation Hierarchy

Example 4

```plaintext
glTranslatef(x, y, 0);  
glRotatef(θ, 0, 0, 1);  
DrawBody();  
glPushMatrix();  
glTranslatef(0, 7, 0);  
DrawRawHead();  
glPopMatrix();  
glTranslatef(2.5, 5.5, 0);  
glRotatef(θ, 0, 0, 1);  
DrawRawUArm();  
glPopMatrix();  
glPushMatrix();  
glTranslatef(0, -3.5, 0);  
glRotatef(θ, 0, 0, 1);  
DrawRawLArm();  
glPopMatrix();  
... (draw other arm)
```

Display Lists

Concept:

- If multiple copies of an object are required, it can be compiled into a display list:

```plaintext
glNewList(listId, GL_COMPILE);  
glBegin(...);  
... // geometry goes here  
glEndList();  
// render two copies of geometry offset by 1 in z-direction:  
glCallList(listId);  
glTranslatef(0.0, 0.0, 1.0);  
glCallList(listId);
```
Display Lists

Advantages:

- More efficient than individual function calls for every vertex/attribute
- Can be cached on the graphics board (bandwidth!)
- Display lists exist across multiple frames
 - *Represent static objects in an interactive application*

Shared Vertices

Triangle Meshes

- Multiple triangles share vertices
- If individual triangles are sent to graphics board, every vertex is sent and transformed multiple times!
 - *Computational expense*
 - *Bandwidth*

![Diagram of shared vertices](image-url)
Triangle Strips

Idea:
- Encode neighboring triangles that share vertices
- Use an encoding that requires only a constant-sized part of the whole geometry to determine a single triangle
- N triangles need n+2 vertices

Triangle Strips

Orientation:
- Strip starts with a counter-clockwise triangle
- Then alternates between clockwise and counter-clockwise
Triangle Fans

Similar concept:
- All triangles share on center vertex
- All other vertices are specified in CCW order

Triangle Strips and Fans

Transformations:
- n+2 for n triangles
- Only requires 3 vertices to be stored according to simple access scheme
- Ideal for pipeline (local knowledge)

Generation
- E.g. from directed edge data structure
- Optimize for longest strips/fans
Vertex Arrays

Concept:
- Store array of vertex data for meshes with arbitrary connectivity (topology)

```c
GLfloat *points[3*nvertices];
GLfloat *colors[3*nvertices];
Glint *tris[numtris] =
   {0, 1, 3, 3, 2, 4, ...};
glVertexPointer( ..., points );
glColorPointer( ..., colors );
glDrawElements( GL_TRIANGLES, ..., tris );
```

Benefits:
- Ideally, vertex array fits into memory on graphics chip
- Then all vertices are transformed exactly once

In practice:
- Graphics memory may not be sufficient to hold model
- Then either:
 - Cache only parts of the vertex array on board (may lead to cache trashing!)
 - Transform everything in software and just send results for individual triangles (bandwidth problem: multiple transfers of same vertex!)
The Rendering Pipeline

Geometry Processing

Geometry Database → Model/View Transform. → Lighting → Perspective Transform. → Clipping

Scan Conversion → Texturing → Depth Test → Blending → Frame-buffer

Rasterization → Fragment Processing

Projective Rendering Pipeline

object OCS

world WCS

viewing VCS

modeling transformation O2W

viewing transformation W2V

projection transformation V2C

clipping CCS

device NDCS

CCS - clipping coordinate system

WCS - world coordinate system

VCS - viewing/camera/eye coordinate system

OCS - object/model coordinate system

NDCS - normalized device coordinate system

DCS - device/display/screen coordinate system

© Wolfgang Heidrich

© Wolfgang Heidrich
Rendering Pipeline

- Scene graph
- Object geometry
- Modelling Transforms
- Viewing Transform
- Projection Transform

Result
- All vertices of scene in shared 3D world coordinate system
Rendering Pipeline

- result
 - scene vertices in 3D view (camera) coordinate system

Rendering Pipeline

- result
 - 2D screen coordinates of clipped vertices
Perspective Transformation

Pinhole Camera:

- Light shining through a tiny hole into a dark room yields upside-down image on wall.
Real Cameras

- Pinhole camera has small aperture (lens opening)
 - hard to get enough light to expose the film

 ![Real Pinhole Camera Diagram]

- Lens permits larger apertures
- Lens permits changing distance to film plane without actually moving the film plane

 ![Camera Diagram]

price to pay: limited depth of field

Real Cameras - Depth of Field

Limited depth of field

- Can be used to direct attention
- Artistic purposes

![Limited Depth of Field Image]
Perspective Transformation

In computer graphics:

- Image plane is conceptually in front of the center of projection

- Perspective transformations belong to a class of operations that are called projective transformations

- Linear and affine transformations also belong to this class

- All projective transformations can be expressed as 4x4 matrix operations

Perspective Projection

Synopsis:

- Project all geometry through a common center of projection (eye point) onto an image plane
Perspective Projection

Example:
- Assume image plane at \(z = -1 \)
- A point \([x, y, z, 1]^T\) projects to
 \([-x/z, -y/z, -z, 1]^T = [x, y, z, z]^T\)

![Diagram of perspective projection](image)

Analysis:
- This is a special case of a general family of transformations called **projective transformations**
- These can be expressed as 4x4 homogeneous matrices!
 - *E.g. in the example:*
 \[
 T \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ -z \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \\ -1 \\ 1 \end{bmatrix}
 \]
Projective Transformations

Transformation of space:
- Center of projection moves to infinity
- Viewing frustum is transformed into a parallelepiped

![Diagram of frustum transformation](image)

Projective Transformations

Convention:
- Viewing frustum is mapped to a specific parallelepiped
 - *Normalized Device Coordinates (NDC)*
- Only objects inside the parallelepiped get rendered
- Which parallelepied is used depends on the rendering system

OpenGL:
- Left and right image boundary are mapped to $x=-1$ and $x=+1$
- Top and bottom are mapped to $y=-1$ and $y=+1$
- Near and far plane are mapped to -1 and 1
Projective Transformations

OpenGL Convention

Camera coordinates vs. NDC

Why near and far plane?

- **Near plane:**
 - Avoid singularity (division by zero, or very small numbers)
- **Far plane:**
 - Store depth in fixed-point representation (integer), thus have to have fixed range of values (0...1)
 - Avoid/reduce numerical precision artifacts for distant objects
Projective Transformations

Asymmetric Viewing Frusta

- Field-of-view (fov) α
- Fov/2
- Field-of-view in y-direction (fovy) + aspect ratio

Projective Transformations

Alternative specification of symmetric frusta
Demos

Tuebingen applets from Frank Hanisch
- http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/AppletIndex.html#Transformationen

Projective Transformations

Properties:
- All transformations that can be expressed as homogeneous 4x4 matrices (in 3D)
- 16 matrix entries, but multiples of the same matrix all describe the same transformation
 - 15 degrees of freedom
 - The mapping of 5 points uniquely determines the transformation
Projective Transformations

Determining the matrix representation

- Need to observe 5 points in general position, e.g.
 - $[\text{left},0,0,1]^T \rightarrow [1,0,0,1]^T$
 - $[0,\text{top},0,1]^T \rightarrow [0,1,0,1]^T$
 - $[0,0,-f,1]^T \rightarrow [0,0,1,1]^T$
 - $[0,0,-n,1]^T \rightarrow [0,0,0,1]^T$
 - $[\text{left}*f/n,\text{top}*f/n,-f,1]^T \rightarrow [1,1,1,1]^T$

- Solve resulting equation system to obtain matrix

\[
\begin{bmatrix}
E & 0 & A & 0 \\
0 & F & B & 0 \\
0 & 0 & C & D \\
0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
x' \\
y' \\
z' \\
w'
\end{bmatrix}
= \begin{bmatrix}
x' = Ex + Az \\
y' = Fy + Bz \\
z' = Cz + D \\
w' = -z
\end{bmatrix}
\]

\[
x = \text{left} \rightarrow x'/w' = 1
\]
\[
x = \text{right} \rightarrow x'/w' = -1
\]
\[
y = \text{top} \rightarrow y'/w' = 1
\]
\[
y = \text{bottom} \rightarrow y'/w' = -1
\]
\[
z = \text{near} \rightarrow z'/w' = 1
\]
\[
z = \text{far} \rightarrow z'/w' = -1
\]

\[
y' = Fy + Bz, \quad \frac{y'}{w'} = \frac{Fy + Bz}{w'}, \quad 1 = \frac{Fy + Bz}{w'}, \quad 1 = \frac{Fy + Bz}{-z},
\]
\[
1 = F \frac{y}{-z} + B \frac{z}{-z}, \quad 1 = F \frac{y}{-z} - B, \quad 1 = F \frac{\text{top}}{-(-\text{near})} - B,
\]
\[
1 = F \frac{\text{top}}{\text{near}} - B
\]
Perspective Derivation

similarly for other 5 planes
6 planes, 6 unknowns

\[
\begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -(f+n) & -2fn \\
0 & 0 & f-n & f-n \\
\end{bmatrix}
\]

Perspective Example

view volume
left = -1, right = 1
bot = -1, top = 1
near = 1, far = 4

\[
\begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -(f+n) & -2fn \\
0 & 0 & f-n & f-n \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -5/3 & -8/3 \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\]
Projective Transformations

Properties
- Lines are mapped to lines and triangles to triangles
- Parallel lines do NOT remain parallel
 - *E.g. rails vanishing at infinity*
- Affine combinations are NOT preserved
 - *E.g. center of a line does not map to center of projected line (perspective foreshortening)*

Orthographic Camera Projection

- Camera’s back plane parallel to lens
- Infinite focal length
- No perspective convergence

- Just throw away z values

\[
\begin{bmatrix}
 x_p \\
 y_p \\
 z_p \\
 1
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Projection Taxonomy

planar projections

perspective: 1,2,3-point

parallel

oblique

cabinet cavalier

top, front, side

orthographic

axonometric: isometric dimetric trimetric

Perspective Projections

classified by vanishing points

one-point perspective

two-point perspective
	hree-point perspective
Axonometric Projections

- projectors perpendicular to image plane

View Volumes

- specifies field-of-view, used for clipping
- restricts domain of z stored for visibility test
View Volume

Convention
- Viewing frustum mapped to specific parallelepiped
 - *Normalized Device Coordinates (NDC)*
 - *Same as clipping coords*
- Only objects inside the parallelepiped get rendered
- Which parallelepiped?
 - *Depends on rendering system*

Perspective Matrices in OpenGL

Perspective Matrices:
- `glFrustum(left, right, bottom, top, near, far)`
 - *Specifies perspective xform (near, far are always positive)*
- `glOrtho(left, right, bottom, top, near, far)`

Convenience Functions:
- `gluPerspective(fovy, aspect, near, far)`
 - *Another way to do perspective*
- `gluLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ)`
 - *Useful for viewing transform*
Projective Rendering Pipeline

- OCS - object/model coordinate system
- WCS - world coordinate system
- VCS - viewing/camera/eye coordinate system
- CCS - clipping coordinate system
- NDCS - normalized device coordinate system
- DCS - device/display/screen coordinate system

Window-To-Viewport Transformation

Generate pixel coordinates
- Map \(x, y\) from range \(-1\ldots1\) (normalized device coordinates) to pixel coordinates on the screen
- Map \(z\) from \(-1\ldots1\) to \(0\ldots1\) (used later for visibility)
- Involves 2D scaling and translation