Homogeneous Coordinates

Homogeneous representation of points:
- Add an additional component \(w = 1 \) to all points
- All multiples of this vector are considered to represent the same 3D point
- All points are represented as column vectors

\[
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
= \begin{pmatrix}
 m_{11} & m_{12} & m_{13} & t_x \\
 m_{21} & m_{22} & m_{23} & t_y \\
 m_{31} & m_{32} & m_{33} & t_z \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 w
\end{pmatrix}, \quad \forall w \neq 0
\]

Homogeneous Vectors

Representing vectors in homogeneous coordinates
- Column vectors with \(w = 0 \)

\[
\begin{pmatrix}
 x \\
 y \\
 z \\
 0
\end{pmatrix}
= \begin{pmatrix}
 m_{11} & m_{12} & m_{13} & t_x \\
 m_{21} & m_{22} & m_{23} & t_y \\
 m_{31} & m_{32} & m_{33} & t_z \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 0
\end{pmatrix}
\]

The Rendering Pipeline

Geometry Processing
- Geometry Database
- Model/View Transform.
- Lighting
- Perspective Transform.
- Clipping

Scan Conversion
- Texturing
- Depth Test
- Blending
- Frame-buffer

The Rendering Pipeline

Perspective Projection

Homogeneous Matrices

Affine Transformations

\[
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{pmatrix}
= \begin{pmatrix}
 m_{11} & m_{12} & m_{13} & 0 \\
 m_{21} & m_{22} & m_{23} & 0 \\
 m_{31} & m_{32} & m_{33} & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\]

Example:

```c
glBegin( GL_TRIANGLES );
gColor3f( 1.0, 0.0, 0.0 );
gVertex3f( 1.0, 0.0, 0.0 );
gColor3f( 0.0, 0.0, 1.0 );
gVertex3f( 1.0, 0.0, 0.0 );
gColor3f(0.0, 0.0, 0.0 );
gVertex3f(0.0, 0.0, 0.0 );
gEnd();
```
Matrix Operations in OpenGL

Specifying matrices (replacement)
- `glLoadIdentity()`
- `glLoadMatrixf(float *m)` // 16 floats

Specifying matrices (multiplication)
- `glMatrixMode(GLfloat *m)` // 16 floats
- `glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)` // angle and axis
- `glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)`
- `glTranslatef(GLfloat x, GLfloat y, GLfloat z)`

Interpreting Composite Transformations

Interpretation 1: moving the coordinate system
- Read operations in forward order
 - `glTranslatef(4.0, 0.0, 0.0)`
 - `glRotatef(30.0);`
 - `glTranslatef(-4.0, -3.0);`

Interpretation 2: moving the object
- Read operations in reverse order
 - `glTranslatef(-4.0, -3.0, 0.0)`
 - `glRotatef(30.0);`
 - `glTranslatef(4.0, 0.0, 0.0)`

Matrix Stacks

- `glPushMatrix()`
- `glPopMatrix()`

Transformation Hierarchy

Example 4

- `glTranslatef(x, y, 0);`
- `glRotatef(θ_x, θ_y, θ_z);`
- `DrawBody();`
- `glPushMatrix();`
- `glTranslatef(0.0, 0.0, 0.0);`
- `DrawHead();`
- `glPushMatrix();`
- `glTranslate(θ_x, θ_y, θ_z);`
- `glRotatef(θ_x, θ_y, θ_z);`
- `DrawLArm();`
- `glPopMatrix();`
- `glPushMatrix();`
- `glTranslate(θ_x, θ_y, θ_z);`
- `glRotatef(θ_x, θ_y, θ_z);`
- `DrawRArm();`
- `glPopMatrix();`
- `glPushMatrix();`
- `glTranslate(θ_x, θ_y, θ_z);`
- `glRotatef(θ_x, θ_y, θ_z);`
- `DrawOtherArm();`
- `glPopMatrix();`

Display Lists

Concept:
- If multiple copies of an object are required, it can be compiled into a display list:
 - `glNewList(listId, GL_COMPILE);`
 - `glBegin(...);`
 - `... // geometry goes here`
 - `glEndList();`
- Render two copies of geometry offset by 1 in z-direction:
 - `glCallList(listId);`
 - `glTranslatef(0.0, 0.0, 1.0);`
 - `glCallList(listId);`
Display Lists

Advantages:
- More efficient than individual function calls for every vertex/attribute
- Can be cached on the graphics board (bandwidth!)
- Display lists exist across multiple frames
 - Represent static objects in an interactive application

Shared Vertices

Triangle Meshes
- Multiple triangles share vertices
- If individual triangles are sent to graphics board, every vertex is sent and transformed multiple times!
 - Computational expense
 - Bandwidth

Triangle Strips

Idea:
- Encode neighboring triangles that share vertices
- Use an encoding that requires only a constant-sized part of the whole geometry to determine a single triangle
- N triangles need n+2 vertices

Triangle Strips

Orientation:
- Strip starts with a counter-clockwise triangle
- Then alternates between clockwise and counter-clockwise

Triangle Fans

Similar concept:
- All triangles share on center vertex
- All other vertices are specified in CCW order

Triangle Strips and Fans

Transformations:
- n+2 for n triangles
- Only requires 3 vertices to be stored according to simple access scheme
- Ideal for pipeline (local knowledge)

Generation
- E.g. from directed edge data structure
- Optimize for longest strips/fans
Vertex Arrays

Concept:
- Store array of vertex data for meshes with arbitrary connectivity (topology)
 - GLfloat *points[3*vertices];
 - GLfloat *colors[3*vertices];
 - GLint *tris[nuntris];
 - {0,1, 3,2,4, ...};
 - glVertexPointer(..., points);
 - glColorPointer(..., colors);
 - glDrawArrays(GL_TRIANGLES, ...);

Benefits:
- Ideally, vertex array fits into memory on graphics chip
- Then all vertices are transformed exactly once

In practice:
- Graphics memory may not be sufficient to hold model
 - Then either:
 - Cache only parts of the vertex array on board (may lead to cache thrashing!)
 - Transform everything in software and just send results for individual triangles (bandwidth problem: multiple transfers of same vertex)

The Rendering Pipeline

Projective Rendering Pipeline

Rendering Pipeline
Rendering Pipeline

- **Scene graph**
 - Object geometry
 - Modelling
 - Transforms
 - Viewing
 - Transform
 - Projection
 - Transform

result

- Scene vertices in 3D view
 - (camera) coordinate system

Perspective Transformation

Pinhole Camera:

- Light shining through a tiny hole into a dark room yields upside-down image on wall

Real Cameras

- Pinhole camera has small aperture (lens opening)
 - Hard to get enough light to expose the film

- Real pinhole camera

- Lens permits larger apertures
- Lens permits changing distance to film plane without actually moving the film plane

price to pay: limited depth of field

Real Cameras - Depth of Field

- Limited depth of field
 - Can be used to direct attention
 - Artistic purposes
Perspective Transformation

In computer graphics:
- Image plane is conceptually in front of the center of projection.
- Perspective transformations belong to a class of operations that are called projective transformations.
- Linear and affine transformations also belong to this class.
- All projective transformations can be expressed as 4x4 matrix operations.

Perspective Projection

Synopsis:
- Project all geometry through a common center of projection (eye point) onto an image plane.

Example:
- Assume image plane at z=-1.
- A point \([x',y',z',1]^{T}\) projects to \([x/z, y/z, -z, 1]^{T} = [x, y, z]^{T}\).

Analysis:
- This is a special case of a general family of transformations called projective transformations.
- These can be expressed as 4x4 homogeneous matrices.
 - E.g. in the example:
 \[
 \begin{pmatrix}
 x' \\ y' \\ z' \\ 1
 \end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & -1 & 1
 \end{pmatrix} \begin{pmatrix}
 x \\ y \\ z \\ 1
 \end{pmatrix} = \begin{pmatrix}
 x' \\ y' \\ z' \\ 1
 \end{pmatrix} = \begin{pmatrix}
 x \\ y \\ z \\ 1
 \end{pmatrix}
 \]

Transformation of space:
- Center of projection moves to infinity.
- Viewing frustum is transformed into a parallelepiped.

Convention:
- Viewing frustum is mapped to a specific parallelepiped.
 - Normalized Device Coordinates (NDC)
- Only objects inside the parallelepiped get rendered.
- Which parallelepied is used depends on the rendering system.

OpenGL:
- Left and right image boundary are mapped to \(x=-1\) and \(x=+1\).
- Top and bottom are mapped to \(y=-1\) and \(y=+1\).
- Near and far plane are mapped to -1 and 1.
Projective Transformations

OpenGL Convention

Camera coordinates vs. NDC

- Frustum representation
- Near plane: Avoid singularity (division by zero, or very small numbers)
- Far plane: Store depth in fixed-point representation (integer), thus have to have fixed range of values (0...1)
- Avoid/reduce numerical precision artifacts for distant objects

Asymmetric Viewing Frusta

- Alternative specification of symmetric frusta
 - Field-of-view (fov) α
 - Fov/2
 - Field-of-view in y-direction $f_{\text{y}} + \text{aspect ratio}$

Demos

- Tuebingen applets from Frank Hanisch
 - [Link](http://www.gts.uni-tuebingen.de/projects/gtsdev/doc/html/4_4/0_Applets.html#4_4/0_Homogeneous)
Projective Transformations

Determining the matrix representation
- Need to observe 5 points in general position, e.g.
 - [left,0,0,1]^T→[1,0,0,1]^T
 - [0, top, 0, 1]^T→[0,1,0,1]^T
 - [0,0,-1,1]^T→[0,0,1,1]^T
 - [left*fn, top*fn, -1, 1]^T→[1,1,1,1]^T
- Solve resulting equation system to obtain matrix

Perspective Derivation

\[
x' = \frac{Ex + Az}{w}, \quad y' = \frac{Ey + Bz}{w}, \quad z' = \frac{Cz + D}{w}
\]

\[
x = \text{left} \rightarrow x'/w' = 1, \quad y = \text{right} \rightarrow x'/w' = -1, \quad z = \text{bottom} \rightarrow y'/w' = 1, \quad z = \text{near} \rightarrow z'/w' = 1
\]

\[
y' = Fy + Bz, \quad z' = Fr + B, \quad 1 = F \frac{z'}{z} - B
\]

Perspective Example

Orthographic Camera Projection

- Camera's back plane parallel to lens
- Infinite focal length
- No perspective convergence

\[
\begin{bmatrix}
 x_p' \\
 y_p' \\
 z_p' \\
 1
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

Properties
- Lines are mapped to lines and triangles to triangles
- Parallel lines do NOT remain parallel
 - E.g. rails vanishing at infinity
- Affine combinations are NOT preserved
 - E.g. center of a line does not map to center of projected line (perspective foreshortening)
Projection Taxonomy

- planar projections
 - perspective: 1,2,3-point
 - parallel
 - oblique
 - cavalier
 - isometric
 - dimetric
 - trimetric
 - top, front, side

Perspective Projections

- classified by vanishing points
 - one-point perspective
 - two-point perspective
 - three-point perspective

Axonometric Projections

- projectors perpendicular to image plane
 - 3 Equal axes
 - 2 Equal axes
 - 0 Equal axes
 - 120°
 - 90°

View Volumes

- specifies field-of-view, used for clipping
- restricts domain of z stored for visibility test

View Volume

- Viewing frustum mapped to specific parallelepiped
 - Normalized Device Coordinates (NDC)
 - Same as clipping coords
 - Only objects inside the parallelepiped get rendered
 - Which parallelepiped?
 - Depends on rendering system

Perspective Matrices in OpenGL

- Perspective Matrices:
 - glFrustum(left, right, bottom, top, near, far)
 - Specifies perspective xform (near, far are always positive)
 - glOrtho(left, right, bottom, top, near, far)

- Convenience Functions:
 - gluPerspective(fovy, aspect, near, far)
 - Another way to do perspective
 - gluLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ)
 - Useful for viewing transform
Projective Rendering Pipeline

- **object OCS**
- **modeling transformation**
- **world WCS**
- **w2v viewing transformation**
- **w2v viewing transformation**
- **projection transformation**
- **v2c clipping transformation**
- **c2n perspective divide**
- **n2d normalized device NDCS**
- **viewport transformation**
- **device DCS**

Window-To-Viewport Transformation

Generate pixel coordinates
- Map x, y from range $-1...1$ (normalized device coordinates) to pixel coordinates on the screen.
- Map z from $-1...1$ to $0...1$ (used later for visibility).
- Involves 2D scaling and translation.

![Diagram of projective rendering pipeline and window-to-viewport transformation](image-url)