Scan Conversion

CPSC 314

The Rendering Pipeline

- Geometry Database
- Model/View Transform.
- Lighting
- Perspective Transform.
- Clipping
- Scan Conversion
- Texturing
- Depth Test
- Blending
- Frame-buffer

Geometry Processing

Rasterization

Fragment Processing
Line Clipping

Outcodes (Cohen, Sutherland ’74)

- 4 flags encoding position of a point relative to top, bottom, left, and right boundary
- E.g.:
 - OC(p1) = 0010
 - OC(p2) = 0000
 - OC(p3) = 1001

<table>
<thead>
<tr>
<th></th>
<th>1010</th>
<th>1000</th>
<th>1001</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Line Clipping

Line segment:
- \((p_1, p_2)\)

Trivial cases:
- \(\text{OC}(p_1) == 0 \&\& \text{OC}(p_2) == 0\)
 - Both points inside window, thus line segment completely visible (trivial accept)
- \((\text{OC}(p_1) \& \text{OC}(p_2)) != 0\)
 - There is (at least) one boundary for which both points are outside (same flag set in both outcodes)
 - Thus line segment completely outside window (trivial reject)

α-Clipping
- Handling of all the non-trivial cases
- Improvement of earlier algorithms (Cohen/Sutherland, Cyrus/Beck, Liang/Barsky)
- Define *window-edge-coordinates* of a point \(p = (x, y)^T\)
 - \(WEC_L(p) = x - x_{\text{min}}\)
 - \(WEC_R(p) = x_{\text{max}} - x\)
 - \(WEC_B(p) = y - y_{\text{min}}\)
 - \(WEC_T(p) = y_{\text{min}} - y\)

Negative if outside!
Line Clipping

α-Clipping: example for clipping p_1

Start configuration After clipping to left After clipping to top

Polygon Clipping

Example
The Rendering Pipeline

Scan Conversion - Rasterization

Convert continuous rendering primitives into discrete fragments/pixels

- Lines
 - Midpoint/Bresenham
- Triangles
 - Flood fill
 - Scanline
 - Implicit formulation
- Interpolation
Scan Conversion - Lines

Scan Conversion - Lines
Scan Conversion - Lines

First Attempt:
- Line (s,e) given in device coordinates
- Create the thinnest line that connects start point and end point without gap

Assumptions for now:
- Start point to the left of end point: xs < xe
- Slope of the line between 0 and 1 (i.e. elevation between 0 and 45 degrees):

\[
0 \leq \frac{ye - ys}{xe - xs} \leq 1
\]

Scan Conversion of Lines - Digital Differential Analyzer

First Attempt:

```c
dda( float xs, ys, xe, ye ) {
    // assume xs < xe, and slope m between 0 and 1
    float m= (ye-ys)/(xe-xs);
    float y= round( ys );
    for( int x= round( xs ) ; x<= xe ; x++ ) {
        drawPixel( x, round( y ) );
        y= y+m;
    }
}
```
Scan Conversion of Lines

DDA:

Moving horizontally along x direction

- Draw at current y value, or move up vertically to y+1?
 - Check if midpoint between two possible pixel centers above or below line

Candidates

- Top pixel: (x+1, y+1)
- Bottom pixel: (x+1, y)

Midpoint: (x+1, y+.5)

Check if midpoint above or below line

- Below: top pixel
- Above: bottom pixel

Key idea behind Bresenham Alg.
Scan Conversion of Lines

Idea: decision variable

```
dda( float xs, ys, xe, ye ) {
  float d = 0.0;
  float m = (ye-ys)/(xe-xs);
  int y = round( ys );
  for( int x = round( xs ) ; x<= xe ; x++ ) {
    drawPixel( x, y );
    d = d+m;
    if( d>= 0.5 ) { d = d-1.0; y++; }
  }
}
```

Scan Conversion of Lines

Bresenham Algorithm (’63)

- Use decision variable to generate purely integer algorithm
- Explicit line equation:
 \[y = \frac{(y_e - y_s)}{(x_e - x_s)}(x - x_s) + y_s \]
- Implicit version:
 \[L(x, y) = \frac{(y_e - y_s)}{(x_e - x_s)}(x - x_s) - (y - y_s) = 0 \]
- In particular for specific x, y, we have
 - \(L(x,y)>0 \) if \((x,y) \) below the line, and
 - \(L(x,y)<0 \) if \((x,y) \) above the line
Scan Conversion of Lines
Bresenham Algorithm

- Decision variable: after drawing point \((x,y)\) decide whether to draw
 - \((x+1,y)\): case E (for “east”)
 - \((x+1,y+1)\): case NE (for “north-east”)
- Check whether \((x+1,y+1/2)\) is above or below line
 \[d = L(x+1, y + \frac{1}{2}) \]
- Point above line if and only if \(d<0\)

Scan Conversion of Lines

Bresenham Algorithm

- Problem: how to update \(d\)?
- Case E (point above line, \(d\leq 0\))
 - \(x= x+1;\)
 - \(d= L(x+2, y+1/2)= d+ (y_e-y_s)/(x_e-x_s)\)
- Case NE (point below line, \(d> 0\))
 - \(x= x+1; y= y+1;\)
 - \(d= L(x+2, y+3/2)= d+ (y_e-y_s)/(x_e-x_s) -1\)
- Initialization:
 - \(d= L(x_s+1, y_s+1/2)= (y_e-y_s)/(x_e-x_s) -1/2\)
Scan Conversion of Lines

Bresenham Algorithm

- This is still floating point
- But: only sign of d matters
- Thus: can multiply everything by $2(x_e-x_s)$

Bresenham Algorithm

```c
Bresenham( int xs, ys, xe, ye ) {
    int y= ys;
    incrE= 2( ye - ys);
    incrNE= 2(( ye - ys ) - (xe-xs));
    for( int x= xs ; x<= xe ; x++ ) {
        drawPixel( x, y );
        if( d<= 0 ) d+= incrE;
        else { d+= incrNE; y++; }
    }
}
```
Scan Conversion of Lines

Discussion

• Bresenham sets same pixels as DDA
• Intensity of line varies with its angle!

Discussion

• Bresenham
 – Good for hardware implementations (integer!)
• DDA
 – May be faster for software (depends on system)!
 – Floating point ops higher parallelized (pipelined)
 ▪ E.g. RISC CPUs from MIPS, SUN
 – No if statements in inner loop
 ▪ More efficient use of processor pipelining
Scan Conversion of Polygons

One possible scan conversion
Scan Conversion of Polygons

A General Algorithm

- Intersect each scanline with all edges
- Sort intersections in x
- Calculate parity to determine in/out
- Fill the ‘in’ pixels

Scan Conversion of Polygons

- Works for arbitrary polygons
- Efficiency improvement:
 - Exploit row-to-row coherence using “edge table”
Edge Walking

Past graphics hardware

- Exploit continuous L and R edges on trapezoid

$$\text{scanTrapezoid}(x_L, x_R, y_B, y_T, \Delta x_L, \Delta x_R)$$

```c
for (y = yB; y <= yT; y++) {
    for (x = xL; x <= xR; x++)
        setPixel(x, y);
        xL += DxL;
        xR += DxR;
}
```

© Wolfgang Heidrich
Edge Walking Triangles

- Split triangles into two regions with continuous left and right edges

\[\text{scanTrapezoid}(x_3, x_m, y_3, y_4, \frac{1}{m_1}, \frac{1}{m_2}) \]
\[\text{scanTrapezoid}(x_2, x_2', y_2', y_3', \frac{1}{m_2'}, \frac{1}{m_1'}) \]

Issues

- Many applications have small triangles
 - Setup cost is non-trivial
- Clipping triangles produces non-triangles
 - This can be avoided through re-triangulation, as discussed
Modern Rasterization: Edge Equations

Define a triangle as follows:

Using Edge Equations

Usage:
- Go over each pixel in bounding rectangle
- Check if pixel is inside/outside of triangle
 - Using sign of edge equations
Computing Edge Equations

Implicit equation of a triangle edge:

\[L(x, y) = \frac{(y_c - y_s)}{(x_c - x_s)} (x - x_s) - (y - y_s) = 0 \]

(see Bresenham algorithm)

- L(x,y) positive on one side of edge, negative on the other

Question:

- How do we know which side is in, and which side out?
 - And how do we make the L(x,y) positive for points inside?

Computing Edge Equations

Assumption:

- Triangle vertices given in counter-clockwise order

Then:

- If \(x_s < x_o \), then
 - Use -L(x,y) as edge equation
- Else
 - Use +L(x,y) as edge equation
Computing Edge Equations

Inside/Outside depends on vertex order:

- Implicit equation of a triangle interior:
 \[L(x, y) = 0 \]

with

\[
L(x, y) = \begin{cases}
- \frac{(y_e - y_s)(x - x_s) + (y - y_s)}{x_e - x_s}, & \text{if } x_s < x_e \\
\frac{(y_e - y_s)(x - x_s) - (y - y_s)}{x_e - x_s}, & \text{if } x_s > x_e
\end{cases}
\]

What about vertical lines?

- \(x_s = x_e \Rightarrow \text{division by zero} \)

Solution:

- We are only interested in the sign of the equation
- Let’s multiply the equation by denominator:
 - \(x_s < x_e \): (\(x_e - x_s \)) is positive, so the sign is preserved
 \[
 L(x, y) = (x_e - x_s) \cdot \left(-\frac{(y_e - y_s)}{x_e - x_s} (x - x_s) + (y - y_s) \right)
 \]
 \[
 = -(y_e - y_s)(x - x_s) + (y - y_s)(x_e - x_s)
 \]
 - \(x_s > x_e \): (\(x_e - x_s \)) is negative, multiply by \(-(x_e - x_s) \) to preserve sign
 \[
 L(x, y) = -(x_e - x_s) \cdot \left(\frac{(y_e - y_s)}{x_e - x_s} (x - x_s) - (y - y_s) \right)
 \]
 \[
 = -(y_e - y_s)(x - x_s) + (y - y_s)(x_e - x_s)
 \]
Computing Edge Equations

Summary:
- Now we have only ONE equation
 \[L(x,y) = -(y_e - y_s)(x - x_s) + (y - y_s)(x_e - x_s) \]
- Works for both cases
- Also works for vertical lines!

Interpolation During Scan Conversion

Need to propagate vertex attributes to pixels
- Interpolate between vertices:
 - \(z \) (depth)
 - \(r, g, b \) color components
 - \(N_x, N_y, N_z \) surface normals
 - \(u, v \) texture coordinates
 - We'll discuss a better way for these next lecture
- Three equivalent ways of viewing this (for triangles)
 1. Bilinear interpolation
 2. Barycentric coordinates
 3. Plane Equation
1. Bilinear Interpolation

We’ve seen this before:
- Interpolate quantity along LH and RH edges, as a function of \(y \)
 - Then interpolate quantity as a function of \(x \)

\[
\begin{align*}
 v_1 \quad v_3 \quad v_2 \\
 y \quad P(x,y) \quad v_L \quad v_R
\end{align*}
\]

2. Barycentric Coordinates

This too:
- Barycentric Coordinates: weighted combination of vertices

\[
P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3 \\
\alpha + \beta + \gamma = 1 \\
0 \leq \alpha, \beta, \gamma \leq 1
\]

\[
\begin{align*}
P_1 & : (1,0,0) \\
P_2 & : (0,1,0) \\
P_3 & : (0,0,1)
\end{align*}
\]

\[
\begin{align*}
\beta = 0 & \Rightarrow (0,1,0) \\
\beta = 0.5 & \Rightarrow (0,0,1) \\
\beta = 1 & \Rightarrow (1,0,0)
\end{align*}
\]
3. Plane Equation

Observation: Quantities vary linearly across image plane

- E.g.: \(r = Ax + By + C \)
 - \(r \) = red channel of the color
 - Same for \(g, b, Nx, Ny, Nz, z \)...
- From info at vertices we know:

 \[
 r_1 = Ax_1 + By_1 + C \\
 r_2 = Ax_2 + By_2 + C \\
 r_3 = Ax_3 + By_3 + C
 \]
- Solve for \(A, B, C \)
- One-time set-up cost per triangle and interpolated quantity

Discussion of Polygon Scan Conversion Algorithms

On old hardware:

- Use first scan-conversion algorithm
 - Scan-convert edges, then fill in scanlines
 - Compute interpolated values by interpolating along edges, then scanlines
- Requires clipping of polygons against viewing volume
- Faster if you have a few, large polygons
- Possibly faster in software
Discussion of Polygon Scan Conversion Algorithms

Modern GPUs:
- Use edge equations
 - **And plane equations for attribute interpolation**
 - **No clipping of primitives required**
- Faster with many small triangles

Additional advantage:
- Can control the order in which pixels are processed
- Allows for more memory-coherent traversal orders
 - *E.g. tiles or space-filling curve rather than scanlines*

Edge Equation Rasterization and Clipping

Note:
- Once we use edge equations, we no longer really have to clip the geometry against window boundary!
- Instead: clip bounding rectangle against window
 - **Only evaluate edge equations for pixels inside the window!**
- Near/far clipping: when interpolating depth values, detect whether point is closer than near or farther than far
 - *If so, don’t draw it*
Triangle Rasterization Issues (Independent of Algorithm)

Exactly which pixels should be lit?
- A: Those pixels inside the triangle edge (of course)

But what about pixels exactly on the edge?
- Draw them: order of triangles matters (it shouldn’t)
- Don’t draw them: gaps possible between triangles

We need a consistent (if arbitrary) rule
- Example: draw pixels on left or top edge, but not on right or bottom edge

Triangle Rasterization Issues

Shared Edge Ordering
Triangle Rasterization Issues

Sliver

Triangle Rasterization Issues

Moving Slivers
Triangle Rasterization Issues

These are ALIASING Problems

- Problems associated with representing continuous functions (triangles) with finite resolution (pixels)
- More on this problem when we talk about sampling…

Coming Up…

Thursday (Oct 11):
- Visibility

Tuesday (Oct 16):
- Quiz 1 solutions (Brad)

Thursday (Oct 18):
- Double Buffering, Picking, Alpha Blending (Brad)