Sampling & Reconstruction

CPSC 314

Scan Conversion of Lines - Digital Differential Analyzer

First Attempt:

```
void line(float x1, float y1, float x2, float y2) {
  float m = (y2-y1)/(x2-x1);
  for (int x = round(x1); x <= x2; x++) {
    drawPixel(x, round(y1 + m * (x-x1)));
  }
}
```

Texture Mapping

- Real life objects have nonuniform colors, normals
- To generate realistic objects, reproduce coloring & normal variations = texture
- Can often replace complex geometric details

Color Texture Mapping

Define color (RGB) for each point on surface

Two approaches
- Surface texture map
- Volumetric texture

Texture Coordinates

Texture image: 2D array of color values (texels)

Assigning texture coordinates \((s,t)\) at vertex with object coordinates \((x,y,z,w)\)

- Use interpolated \((s,t)\) for texel lookup at each pixel
- Use value to modify a polygon’s color
 - Or other surface property
- Specified by programmer or artist

```c
GLuint TexCoord2f(float s, float t);
GLuint Vertex(float x, float y, float z, float w);
```
Texture Mapping

- Wolfang

Reconstruction

- How to deal with:
 - Pixels that are much larger than texels?
 - Apply filtering, "averaging"
 - Pixels that are much smaller than texels?
 - Interpolate

Interpolating Textures

- Nearest neighbor
- Bilinear
- Hermite

Interpolating Textures

- Nearest neighbor
- Bilinear
- Hermite

MIPmapping

- Use “image pyramid” to precompute averaged versions of the texture

MIPmaps

- Multum in parvo — many things in a small place
 - Prespecify a series of prefiltered texture maps of decreasing resolutions
 - Requires more texture storage
 - Avoid shimmering and flashing as objects move

```c
glGenerateMipMaps
```

- Automatically constructs a family of textures from original texture size down to 1x1 without

MIPmap storage

- Only 1/3 more space required

© Wolfgang Heissner
Texture Parameters

In addition to color can control other material/object properties
- Surface normal (bump mapping)
- Reflected color (environment mapping)

Samples

- Most things in the real world are continuous
- Everything in a computer is discrete
- The process of mapping a continuous function to a discrete one is called sampling
- The process of mapping a discrete function to a continuous one is called reconstruction
- The process of mapping a continuous variable to a discrete one is called quantization
- Rendering an image requires sampling and quantization
- Displaying an image involves reconstruction

Line Segments

- We tried to sample a line segment so it would map to a 2D raster display
- We quantized the pixel values to 0 or 1
- We saw stair steps, or jaggies

Unweighted Area Sampling

Shade pixels wrt area covered by thickened line. Equal areas cause equal intensity, regardless of distance from pixel center to area
- Rough approximation formulated by dividing each pixel into a finer grid of pixels
- *Primitive cannot affect intensity of pixel if it does not intersect the pixel*
Weighted Area Sampling

Intuitively, pixel cut through the center should be more heavily weighted than one cut along corner.

Weighting function, W(x,y)
- Specifies the contribution of primitive passing through the point (x, y) from pixel center

![Image of weighting function](image)

Images

An image is a 2D function I(x, y)
- Specifies intensity for each point (x, y)
- (we consider each color channel independently)

![Image of pixel sampling](image)

Image Sampling and Reconstruction

- Convert continuous image to discrete set of samples
- Display hardware *reconstructs* samples into continuous image
 - Finite sized source of light for each pixel

![Image of sampling and reconstruction](image)

Point Sampling an Image

- Simplest sampling is on a grid
- Sample depends solely on value at grid points

![Image of point sampling](image)

Point Sampling

Multiply sample grid by image intensity to obtain a discrete set of points, or samples.

![Image of point sampling geometry](image)

Sampling Errors

Some objects missed entirely, others poorly sampled
- Could try unweighted or weighted area sampling
- But how can we be sure we show everything?

Need to think about entire class of solutions!

![Image of sampling errors](image)
Image As Signal

Image as spatial signal

2D raster image
- Discrete sampling of 2D spatial signal

1D slice of raster image
- Discrete sampling of 1D spatial signal

Sampling Theory

How would we generate a signal like this out of simple building blocks?

Theorem

- Any signal can be represented as an (infinite) sum of sine waves at different frequencies

Sampling Theory in a Nutshell

Terminology
- Wavelength – length of repeated sequence on infinite signal
- Frequency – 1/wavelength (number of repeated sequences in unit length)

Example – sine wave
- Wavelength = 2π
- Frequency = 1/2π

Summing Waves I

Summing Waves II

1D Sampling and Reconstruction
1D Sampling and Reconstruction

Problems
- Jaggies – abrupt changes
- Lose data

Sampling Theorem
- Continuous signal can be completely recovered from its samples
 - Sampling rate greater than twice highest frequency present in signal
 - *Claude Shannon*
Nyquist Rate

Lower bound on sampling rate
- Twice the highest frequency component in the image’s spectrum

Falling Below Nyquist Rate

When sampling below Nyquist Rate, resulting signal looks like a lower-frequency one
- This is aliasing!

Nyquist Rate

- \(f_s < 2f \)
- \(f_s = 2f \)
- \(f_s > 2f \)

Aliasing

Incorrect appearance of high frequencies as low frequencies

To avoid: anti-aliasing
- Supersample
 - Sample at higher frequency
- Low pass filtering
 - Remove high frequency function parts
 - Aka prefiltering, band-limited

Supersampling

Low-Pass Filtering

Original signal

Low-pass filtered signal
Low-Pass Filtering

Previous Antialiasing Example
Texture mipmapping: low pass filter

Discussion
Sampling & Reconstruction
- Fundamental issue in graphics, vision, and many other areas of computer science
 - Whenever continuous signals need to be represented in a computer
 - Aliasing refers to the problem of reconstruction errors due to frequencies above the Nyquist limit
 - These frequencies show up as erroneous low frequency content

Anti-Aliasing Approaches
- Low-pass filtering (before sampling!)
 - Avoids aliasing
 - May not be practical in all settings
 - For images: artifacts around edges?!?
 - Supersampling
 - General algorithmic approach
 - However: even the higher resolution image has a Nyquist limit!
 - Slow

Coming Up…
Tuesday:
- Modern GPU Features

Thursday:
- Shadow Algorithms