Scan Conversion (fixed function)

OCS
modeling transformation

WCS
viewing transformation

VCS
projection transformation

CCS

NDCS

DCS

OCS - object coordinate system
WCS - world coordinate system
VCS - viewing coordinate system
CCS - clipping coordinate system
NDCS - normalized device coordinate system
DCS - device coordinate system

Implicit, Explicit, and Parametric equations for defining geometry
Lines and Curves

Explicit
- line
- circle
- plane
- sphere

Lines and Curves

Parametric
- line
- circle
- plane
Lines and Curves

Implicit

line

circle

Polygons

Interactive graphics uses polygons

simple convex simple concave non-simple (self-intersection)
In practice we use triangles

- why?
 - simple convex polygons
 - trivial to break into triangles
 - concave or non-simple polygons
 - more effort to break into triangles

What is Scan Conversion?
(a.k.a. Rasterization)
Modern Rasterization

Define a triangle as follows:

Scaled Implicit Line Equation
Edge Equations: Code

```c
findBoundingBox(&xmin, &xmax, &ymin, &ymax);
setupEdges (&a0,&b0,&c0,&a1,&b1,&c1,&a2,&b2,&c2);

for (int y = yMin; y <= yMax; y++) {
    for (int x = xMin; x <= xMax; x++) {
        float e0 = a0*x + b0*y + c0;
        float e1 = a1*x + b1*y + c1;
        float e2 = a2*x + b2*y + c2;
        if (e0 > 0 && e1 > 0 && e2 > 0)
            Image[x][y] = TriangleColor;
    }
}
```

Interpolation During Scan Conversion

- Interpolate values from vertices to interior pixels:
 - z depth values
 - r,g,b colour components
 - u,v texture coordinates
 - N_x,N_y,N_z surface normals

- Equivalent ways of viewing this (for triangles)
 - plane equation
 - barycentric coordinates
 - bilinear interpolation
Plane Equation

- \(v = Ax + By + C \)

Barycentric Coordinates

- **weighted combination of vertices**

\[
P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3
\]

\[
\alpha + \beta + \gamma = 1
\]

\[
0 \leq \alpha, \beta, \gamma \leq 1
\]

To interpolate a scalar quantity, \(v \), whose values are known at the vertices:

\[
v = \alpha \cdot v_1 + \beta \cdot v_2 + \gamma \cdot v_3
\]
Interpreting Barycentric Coordinates

• (1) coordinate system using edges as basis vectors
• (2) fractional distances
• (3) fractional areas
• (4) fractional weights
Interpolation: Screen vs World Space

Perspective-correct interpolation

\[v = \frac{\alpha \cdot v_1 / h_1 + \beta \cdot v_2 / h_2 + \gamma \cdot v_3 / h_3}{\alpha / h_1 + \beta / h_2 + \gamma / h_3} \]

\[v = \frac{\text{Barycentric}(v_1, v_2, v_3)}{\text{Barycentric}(1, 1, 1)} \]