Visibility

Determining which objects / triangles / pixels can be seen

- Projective rendering
 1. view volume culling
 2. view volume clipping
 3. backface culling
 4. occlusion: z-buffer test
 5. occlusion: object culling

- Raytracing
 For each pixel in image, compute a ray and see what it hits in the scene.
(1) View Volume Culling (for triangles)

Idea: If vertices are outside view volume then cull.

Revised Idea:
Cull iff all vertices are outside wrt the same view volume plane.

(1) View Volume Culling (for objects)

Idea: Fast test to cull entire object.

Bounding sphere:
Cull if \(\text{dist}(C, \text{plane}) < -r \)

Bounding box:
Cull if all 8 vertices are "outside" wrt any one of the view volume planes.
(2) View Volume Clipping

general polygon clipping:

Clip against each of the 6 planes in fun.

vertex list

Clip near

Clip front

clip polygon

Clip against each of the 6 planes in fun.

Vertex list

Clip near

clip polygon

tor triangles with bounding-box scan conversion:

vertex list

Clip near

Clip front

Clip polygon

Clipping in VCS

Plane equations

Othographic View Volume

left: \(x - \text{left} = 0 \)
right: \(-x + \text{right} = 0 \)
bottom: \(y - \text{bottom} = 0 \)
top: \(-y + \text{top} = 0 \)
front: \(-z - \text{near} = 0 \)
back: \(z + \text{far} = 0 \)

Perspective View Volume

left: \(x + \text{left} \cdot z / \text{near} = 0 \)
right: \(-x - \text{right} \cdot z / \text{near} = 0 \)
top: \(-y - \text{top} \cdot z / \text{near} = 0 \)
bottom: \(y + \text{bottom} \cdot z / \text{near} = 0 \)
front: \(-z - \text{near} = 0 \)
back: \(z + \text{far} = 0 \)
Clipping in NDCS (?)

Fails for primitives that span from $+z$ to $-z$

Clipping in CCS

NDCS: $-1 \leq x_{NDCS} \leq 1$

CCS: $-h_{CCS} \leq x_{CCS} \leq h_{CCS}$

canonical plane equations:

left: $x + h = 0$
right: $-x + h = 0$
bot: $y + h = 0$
top: $-y + h = 0$
near: $z + h = 0$
far: $-z + h = 0$

Would be convenient because the plane equations remain fixed

No!

This is where the P_2 line segment connectivity gets lost

P_{CCS} \rightarrow M_{proj} \rightarrow P_{NDCS}

P_{VCS} P_{CCS} P_{NDCS}
Line-Plane intersection

Plane equation
\[\vec{N} = (\vec{P}_2 - \vec{P}_0) \times (\vec{P}_1 - \vec{P}_0) \]
\[A x + B y + C z + D = 0 \]
\[\langle A, B, C \rangle \cdot \langle x, y, z \rangle + D = 0 \]
\[\vec{N} \cdot \vec{P} + D = 0 = F(\vec{P}) \]

where \(D = -\vec{N} \cdot \vec{P}_0 \)
\[\vec{N} \cdot (\vec{P}_0 + t(\vec{P}_b - \vec{P}_0) + D = 0 \]
\[\vec{N} \cdot \vec{P}_0 + t(n \cdot (\vec{P}_b - \vec{N} \cdot \vec{P}_0)) + D = 0 \]

(3) Backface Culling in VCS

Idea: cull if \(N_z < 0 \)

Correct VCS culling rule:
Cull if \(\vec{P}_v \text{eye}(0,0,0) \) is below the plane of the polygon.
where “below” = side of the Normal
\[\vec{N} \cdot \vec{P} + D = 0 = F(x,y,z) \quad \text{Cull if } F(0,0,0) < 0 \quad \text{i.e. cull if } D < 0 \]
(3) Backface Culling in NDCS

Cull if N_z in NDCS is > 0

Transforming Normals

Using $h=0$

Problem (occurs for non-uniform scaling)

Scale (x, y)

Wrong answer $N(2, 1)$

Defined answer N'

Skip the translate

Origin
Transforming Normals

consider a plane, before and after transformation:

Before:

\[p' = Mp \]

\[\vec{N} \]

\[\vec{N}' = Q \cdot \vec{N} \]

After:

\[p' = Mp \]

\[\vec{N}' \]

\[M : \text{transforms points in the usual way} \]

\[Q : \text{transforms normals — what should it be?} \]

Let’s write a plane equation for \(\mathbf{A} \)

\[Ax + By + Cz + D = 0 \]

or \(\begin{bmatrix} A & B & C \end{bmatrix} \begin{bmatrix} x \vline y \vline z \end{bmatrix}^T = 0 \]

Let’s write this as \(N^T \cdot p = 0 \)

Similarly, for \(\mathbf{B} \), we can write \(N^T \cdot p' = 0 \)

Now substitute for \(N' \):

\[p' = (QN)^T \cdot (MP) \]

\[\Rightarrow N^T (QN)^T MP = 0 \]

\[Q^T M = I \Rightarrow Q = (M^{-1})^T \]

(4) Occlusion: Z-buffer

view occluded by objects in front of a given pixel or polygon?

- image space algorithms:
 - operate on pixels or scan-lines
 - visibility resolved to the precision of the display
 - e.g.: Z-buffer
- object space algorithms:
 - explicitly compute visible portions of polygons
 - painter’s algorithm: depth-sorting, BSP trees
Z-buffer

store \((r, g, b, z)\) for each pixel

for all \(i, j\) {
 Depth\([i, j]\) = MAX DEPTH
 Image\([i, j]\) = BACKGROUND COLOUR
}

for all polygons \(P\) {
 project vertices into screen-space, i.e., DCS
 for all pixels in \(P\) {
 if \(Z_{\text{pixel}} < \text{Depth}[i, j]\) { // closer?
 Image\([i, j]\) = C_{\text{pixel}} // overwrite pixel
 Depth\([i, j]\) = Z_{\text{pixel}} // overwrite z
 }
 }
}

Z-buffer

- hardware support
- extra memory
- jaggies, i.e., steps along intersections
- poor performance for high depth complexity scenes;
 - use occlusion culling to mitigate this

- resolution issues in \(z\): “z-fighting”
- results can still depend on rendering order
 for cases of identical depths for a fragment
(5) Occlusion: Object culling

- occlusion queries
 - virtual render of bounding box
- precomputed visibility tables
 - store a list of visible cells
- horizon maps
 - for terrain models

Visibility in Practice: WebGL, OpenGL

Commonly supported by hardware & OpenGL / DirectX

- view volume culling (for triangles)
- view volume clipping
- backface culling
- z-buffer occlusion test

Software, i.e., on your own

- view volume culling (for objects)
- occlusion culling
Raytracing

alternative to projective rendering

- for each pixel p
 - construct ray \(r \) from eye through \(p \)
 - intersect \(r \) with all polygons or objects
 - color \(p \) according to closest surface

![Raytracing Diagram](image-url)