CPSC 424
From Curves to Surfaces

Syllabus

Curves in 2D and 3D
Properties of Curves and Surfaces
Surfaces
- Sweeping, extrusion, surfaces of revolution
- Tensor-product surfaces
- Bézier triangles
Surfaces

Categories:
- Explicit \(z = F(x, y) \)
- Implicit \(F(x, y, z) = 0 \)
- Parametric \(F(s, t) : \mathbb{R}^2 \mapsto \mathbb{R}^3 \)
 \[F(s, t) := \begin{pmatrix} F_x(s, t) \\ F_y(s, t) \\ F_z(s, t) \end{pmatrix} \]

From Curves to Surfaces

Motivation
- Derive surface shapes from curves through set of simple operations
 - Extrusion
 - Revolution
 - Sweep
 - Ruling
- The curves can be modeled using any of the techniques we have discussed
Basic surfaces

Extrusion

Concept:
- Move a curve (“profile”) along a line segment
- The union of all points visited defines the surface

\[S(u,v) = F(u) + P_1P_2v \]
Extrusion as Parametric Surface

Curves:
- Profile: arbitrary curve $P(t)$
- Line segment for sweeping:
 $$L(s) = (1 - s) \cdot \mathbf{p}_0 + s \cdot \mathbf{p}_1$$

Swept Surface:
 $$F(s, t) = L(s) + P(t)$$
 - Parametric function has very specific structure
 - Generalized sweeping along arbitrary curve more complex

Surfaces of Revolution

Concept:
- Rotate profile curve around an axis
- $R(v)$ rotation matrix (v in $[0,2\pi]$)
 $$S(u, v) = R(v)F(u)$$
Sweeping

Concept:
- Generalize extrusion & revolution - sweep along arbitrary curve
- To orient profile at any point
 - user specified
 - use Fresnet frame

Bilinear Patches

Bilinear interpolation of 4 3D points - 2D analog of 1D linear interpolation between 2 points in the plane

Given \(P_{00}, P_{01}, P_{10}, P_{11} \) - associated parametric bilinear surface for \(u, v \in [0,1] \) is:

\[
P(u,v) = (1-u)(1-v)P_{00} + (1-u)vP_{01} + u(1-v)P_{10} + uvP_{11}
\]
Bilinear Patch

Given \(P_{00}, P_{01}, P_{10}, P_{11} \) - associated parametric bilinear surface for \(u, v \in [0,1] \) is:

\[
P(u,v) = (1-u)(1-v)P_{00} + (1-u)vP_{01} + u(1-v)P_{10} + uvP_{11}
\]

Questions:
- What does an isoparametric curve of a bilinear patch look like?
- When is a bilinear patch planar?
Quad Mesh: Union of Bilinear Patches

Ruled Surfaces

- Given two curves $a(t)$ and $b(t)$ corresponding ruled surface is constructed by connecting curves with straight lines

$$S(u,v) = va(u) + (1-v)b(u)$$
• Given two curves $a(t)$ and $b(t)$ corresponding ruled surface is constructed by connecting curves with straight lines

$$S(u,v) = va(u) + (1-v)b(u)$$

Questions:
• When is a ruled surface a bilinear patch?
• When is a bilinear patch a ruled surface?
Boolean Sum/Coons Patch (1967)

Interpolate four-sided curve loop

Given four connected curves C_i, $i=1,2,3,4$ Boolean sum $S(u,v)$ fills the interior with surface

$S_1(u,v) = vC_1(u) + (1-v)C_3(u)$

$S_2(u,v) = uC_2(v) + (1-u)C_4(v)$

$P(u,v) = (1-u)(1-v)P_{00} + (1-u)vP_{01} + u(1-v)P_{10} + uvP_{11}$

$S(u,v) = S_1(u,v) + S_2(u,v) - P(u,v)$

$S(u,v)$ coincides with C_i along its boundaries
Examples

Summary

- Simple methods for generating surfaces from curves
- Curves can be modeled any way we want
- Limited set of shapes
Clicker question

What kind of surface best describes the pot on the right?
A. Extrusion
B. Revolution
C. Ruled
D. Sweep

Clicker question

What kind of surface best describes the hose on the right?
A. Extrusion
B. Revolution
C. Ruled
D. Sweep
Tensor Product Surfaces

More General Parametric Surfaces
• Use basis functions like for curves
• Apply independently to parametric directions s and t
• Works for arbitrary basis

Example:
• Bézier curve:
 $$F(t) = \sum_{i=0}^{m} B_i^m(t) \cdot b_i$$
• Tensor product Bézier patch:
 $$F(s, t) = \sum_{i=0}^{m_s} \sum_{j=0}^{m_t} B_i^{m_s}(s) \cdot B_j^{m_t}(t) \cdot b_{i,j}$$

Notes:
• Surface is (rational) polynomial in s and t, depending on basis
 – The degree in s is m_s
 – The degree in t is m_t
 – The total degree is $m_s + m_t$

• Algorithms from curves transfer directly to tensor product surfaces
• Properties of surfaces directly related to properties of corresponding curves
Tensor Product Surfaces

Properties (Bézier, B-Spline, Rational Bézier/B-Spline):

- (Local) Convex hull
- Affine invariance
- Control points of the edge curves are the boundary points of the control mesh
- Bézier patch interpolates corner vertices of its control mesh

Continuity

- Two patches
 \[F(s,t) : [s_0, s_1] \times [t_0, t_1], \]
 \[G(s,t) : [s_1, s_2] \times [t_0, t_1] \]
- are C^k continuous if for all t
 \[F^{(l)}(s,t) = G^{(l)}(s,t); l \leq k \]
- Same for s
- Special case – two patches sharing one corner
Tensor Product Surfaces

Limitations:

• Total degree is sum of degrees in s and t

• Always parameterized over rectangular parameter interval

• Refinement (degree elevation or knot insertion) always affects a whole row or column

Limitations: “suitcase corners”
Patch Networks

Clicker question

What kind of surface best describes the shape on the right?

A. Extrusion
B. Revolution
C. Sweep
D. Coons Patch
Clicker question

What kind of surface best describes the shape on the right?

A. Extrusion
B. Revolution
C. Sweep
D. Coons Patch