Syllabus

Curves in 2D and 3D

Properties of Curves and Surfaces

Surfaces

Polygonal meshes
- Definitions & Data Structures
- Subdivision (Loop, Butterfly, …)
- **Simplification**
- Acquisition
- Smoothing
Mesh Simplification

Motivation

- Reduce information content
- Accelerate rendering
- Multi-resolution models
Level of Detail (LOD)

Refined mesh for close objects
Simplified mesh for far

Methodology

Sequence of local operations
- Involve near neighbors - only small *patch* affected in each operation
- Each operation introduces error
- Find and apply operation which introduces the least error
Simplification Operations (1)

Decimation

- Vertex removal:
 - $v \leftarrow v-1$
 - $f \leftarrow f-2$

Remaining vertices - subset of original vertex set

Simplification Operations (2)

Decimation

- Edge collapse
 - $v \leftarrow v-1$
 - $f \leftarrow f-2$

Vertices may move
Error Control

Local error: Compare new patch with previous iteration
- Fast
- Accumulates error
- Memory-less

Global error: Compare new patch with original mesh
- Slow
- Better quality control
- Can be used as termination condition
- Must remember the original mesh throughout the algorithm

Local vs. Global Error

![Rabbit 3D models](2000 faces, 488 faces, 488 faces)
Simplification Error Metrics

Measures
- Distance to plane
- Curvature

Usually approximated
- Average plane
- Discrete curvature

\[\Sigma \alpha / 2\pi \]

The Basic Algorithm

Repeat

- Select the element with minimal error
- Perform simplification operation (remove/contract)
- Update error (local/global)

Until mesh size / quality is achieved
Triangulating the Hole

Vertex removal produces non-planar loop
- Split loop recursively
- Split plane orthogonal to the average plane

Control aspect ratio

Triangulation may fail
- Vertex is not removed

Example

Simplifier
Pros and Cons

Pros:
• Efficient
• Simple to implement and use
 – Few input parameters to control quality
• Reasonable approximation
• Works on very large meshes
• Preserves topology
• Vertices are a subset of the original mesh

Cons:
• Error is not bounded
 – Local error evaluation causes error to accumulate

Edge Collapse Algorithm

Simplification operation:
Edge collapse (pair contraction)

Error metric:
distance, pseudo-global

Also simplifies topology
Distance Metric: Quadrics

Choose point closest to set of planes (triangles)

Sum of squared distances to set of planes is quadratic \(\Rightarrow \) has a minimum

Quadrics

Plane
- \(Ax + By + Cz + D = 0 \), where \(A^2 + B^2 + C^2 = 1 \)
- \(p = [A, B, C, D], v = [x, y, z, 1], v^T p = 0 \)

Quadratic distance between \(v \) and \(p \):

\[
\Delta_p(v) = (v^T p)^2 = (v^T p) (p^T v) = v^T (p^T p) v^T
\]

\[
K_p = \begin{bmatrix}
A^2 & AB & AC & AD \\
AB & B^2 & BC & BD \\
AC & BC & C^2 & CD \\
AD & BD & CD & D^2
\end{bmatrix}
\]
Distance to Set of Planes

\[\Delta(v) = \sum_{p \in \text{planes}(v)} \Delta_p(v) \]
\[= \sum_{p \in \text{planes}(v)} (vK_pv^T) \]
\[= v \left(\sum_{p \in \text{planes}(v)} K_p \right) v^T \]
\[= vQ_vv^T \]

After \(v_1, v_2 \) are contracted to \(v \),
\[Q_v \leftarrow Q_{v_1} + Q_{v_2} \]

Pseudo-global

All original planes persist during the entire simplification process

Contracting Two Vertices

- Goal: Given edge \(e = (v_1, v_2) \), find contracted \(v = (x, y, z, 1) \) that minimizes \(\Delta(v) \):
 \[\frac{\partial \Delta}{\partial x} = \frac{\partial \Delta}{\partial y} = \frac{\partial \Delta}{\partial z} = 0 \]
 - Solve system of linear normal equations:
 \[
 \begin{bmatrix}
 q_{11} & q_{12} & q_{13} & q_{14} \\
 q_{21} & q_{22} & q_{23} & q_{24} \\
 q_{31} & q_{32} & q_{33} & q_{34} \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 0 \\
 0 \\
 0 \\
 1
 \end{bmatrix}
 = v
 \]
 - If no solution - select the edge midpoint
Selecting Valid Pairs for Contraction

Edges:
\[\{ (v_1, v_2) : (v_1v_2) \text{ is in the mesh} \} \]

Close vertices:
\[\{ (v_1, v_2) : ||v_1 - v_2|| < T \} \]

- Threshold T is input parameter

Algorithm

- Compute \(Q_v \) for all the mesh vertices
- Identify all valid pairs
- Compute for each valid pair \((v_1, v_2)\) the contracted vertex \(v \) and its error \(\Delta(v) \)
- Store all valid pairs in a priority queue (according to \(\Delta(v) \))
- While reduction goal not met
 - Contract edge \((v_1, v_2)\) with the smallest error to \(v \)
 - Update the priority queue with new valid pairs
Examples

Dolphin (Flipper)

Original - 12,337 faces

2,000 faces

300 faces (142 vertices)

Examples

Original - 12,000 faces

2,000 faces

298 faces (140 vertices)
Pros and Cons

Pros
• Error is bounded
• Allows topology simplification
• High quality result
• Quite efficient

Cons
• Difficulties along boundaries
• Difficulties with coplanar planes
• Introduces new vertices not present in the original mesh