CPSC 424
Curves: Implicit vs. Explicit vs. Parametric

Syllabus

Curves in 2D and 3D
- Implicit vs. Explicit vs. Parametric curves
- Bézier curves, de Casteljau algorithm
- Continuity
- B-Splines
- Subdivision Curves

Properties of Curves and Surfaces

Surfaces/Meshes/Advanced Topics
How to represent shape?

Mathematical models of real world shapes
- Most common: Boundary representations
 - Freeform – smooth surface
 - Mesh – polygonal surface
- Alternative: Volumetric representations
 - Primitive based
 - Voxel based

Geometry – Curves/2D shapes
- Boundary representations
 - Freeform – splines
 - Discrete – polyline
- Alternative: 2D shapes
 - Primitive based
 - Pixel based
Modeling Geometry

Approaches:
- Fixed set of primitives
 - Curves: lines, circles, rectangles…
 - Surfaces: spheres, cylinders…
 - Hard to assemble arbitrary (smooth) geometry
- Freeform curves/surfaces
 - Single representation for arbitrarily complex geometry
 - Curves and surfaces as functions with built-in smoothness properties
 - Bézier curves, splines
- Discrete: meshes

Curves: Explicit vs. Implicit vs. Parametric
Curves & Surfaces as Explicit Functions

Curves:
\[y = F(x) \]

Surfaces:
\[z = F(x, y) \]

Examples:

Not a function in Cartesian coord.,
\[y = \pm \sqrt{1 - x^2} \]

Not representable as a function:

Limitations of explicit functions:
- Cannot model every curve in 2D
- No true 3D curves possible
 - All curves confined to a plane
Curves & Surfaces as Implicit Functions

Curves

\[F(x, y) = 0 \]

Surfaces

\[F(x, y, z) = 0 \]

Interpretation for curves:

- Iso-lines (contours) in a terrain

Property:

- If \(F \) is continuous, implicit curves and surfaces are always closed or extend to infinity

Examples:

- \(x^2 + y^2 - 1 = 0 \)
- \(-\frac{5x}{x^2 + y^2 + 1} = c \)
Curves & Surfaces as Implicit Functions

Conversion:
- Explicit to implicit: trivial
- Implicit to explicit: hard
 - Solving for \(y \) involves root finding!

Limitations of implicit curves:
- Curves only in 2D
 - Every implicit function in 3D describes a surface!
- Often unintuitive
- Difficult to render (display)
- But: useful for many tasks, including modeling, medical imaging

Implicit Functions in Medical Imaging

Data:
- CT & MRI scanners produce volume of density values \(F(x,y,z) \)
- Individual features (bone surface, brain surface) are iso-surfaces of the volume: \(F(x,y,z)=c \)
Curves & Surfaces as Parametric Functions

Concept:
- Curve as function of artificial “time” parameter \(t \)

2D curve:
\[
\begin{pmatrix}
 x \\
 y
\end{pmatrix} = \begin{pmatrix}
 F_x(t) \\
 F_y(t)
\end{pmatrix} =: F(t); F : \mathbb{R} \mapsto \mathbb{R}^2
\]

3D curve:
\[
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix} = \begin{pmatrix}
 F_x(t) \\
 F_y(t) \\
 F_z(t)
\end{pmatrix} =: F(t); F : \mathbb{R} \mapsto \mathbb{R}^3
\]

Curve example:
\[
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix} = \begin{pmatrix}
 \cos t \\
 \sin t \\
 t
\end{pmatrix}
\]

Surfaces (in 3D):
\[
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix} = \begin{pmatrix}
 F_x(s,t) \\
 F_y(s,t) \\
 F_z(s,t)
\end{pmatrix} = F(s,t); F : \mathbb{R}^2 \mapsto \mathbb{R}^3
\]
Curves & Surfaces as Parametric Functions

This works in arbitrary dimensions!

- **Curves:**
 \[\mathbf{x} = F(t); F : \mathbb{R} \rightarrow \mathbb{R}^d \]

- **Surfaces:**
 \[\mathbf{x} = F(s, t); F : \mathbb{R}^2 \rightarrow \mathbb{R}^d \]

- **Hypersurfaces:**
 \[\mathbf{x} = F(t); F : \mathbb{R}^n \rightarrow \mathbb{R}^d ; n < d \]

Notation:
- Bold variables (\(t, \mathbf{x} \)) denote vectors, while italics denote scalars (\(t, d \)).

Parametric Curves

Advantage:
- Arbitrary curves in arbitrary dimensions

Still a problem:
- Unintuitive
 - *Try to find a formula for a specific curve you have in mind!*
- Hard to program with
 - *Deal with arbitrary mathematical functions*

Solution:
- Restrict yourself to specific class of functions
Spline Curves

Description = basis functions + coefficients

\[F(t) = \sum_{i=0}^{n} P_i B_i(t) = (x(t), y(t)) \]

\[x(t) = \sum_{i=0}^{n} P_i^x B_i(t) \]

\[y(t) = \sum_{i=0}^{n} P_i^y B_i(t) \]

• Same basis functions for all coordinates

Polynomial Curves

Advantages:
• Computationally easy to handle
 – \(P_0 \ldots P_n \) uniquely describe curve (finite storage, easy to represent)

Disadvantages:
• Not all shapes representable

What basis functions \(B_i \) should we use?
Example: Polynomial Curves

Polynomial Curves:
- Restrict to polynomial functions of degree \(\leq m \):
 \[
 x = \sum_{i=0}^{m} b_i t^i
 \]
- Note: \(b_i \) are vectors!
- Example curve in 2D:
 \[
 \begin{pmatrix}
 x \\
 y
 \end{pmatrix}
 = \sum_{i=0}^{m} \begin{pmatrix}
 b_{x,i} \\
 b_{y,i}
 \end{pmatrix} t^i
 \]

Polynomial Curves

Advantages:
- Computationally easy to handle
 - \(b_0 \ldots b_m \) uniquely describe curve (finite storage, easy to represent)

Disadvantages:
- Not all shapes representable
 - Partially fix with piecewise functions later (splines)
- Still not very intuitive
 - Fix: represent polynomials in different basis
Splines: parametric curves over geometric base

Geometric meaning of coefficients (base)

- Approximate/interpolate set of positions, derivatives, etc.
Parametric Spline Curves

Commonly used classes:
- Polynomials
 - Bézier curves, Hermite interpolation etc.
- Piecewise polynomials
 - B-splines
- Rational and piecewise-rational curves
 - Rational Bézier curves, rational B-splines (NURBS)