CPSC 424
Bézier Curves

Syllabus

Curves in 2D and 3D
- Implicit vs. Explicit vs. Parametric curves
- Bézier curves, de Casteljau algorithm
- Continuity
- B-Splines
- Subdivision Curves

Properties of Curves and Surfaces

Surfaces/Meshes/Advanced Topics
Clicker Test

Do you have a clicker?

A. Hardware
B. Mobile
C. No

Curves & Surfaces as Parametric Functions

Concept:
• Curve as function of artificial “time” parameter t

2D curve:
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} F_x(t) \\ F_y(t) \end{pmatrix} =: F(t); F : \mathbb{R} \mapsto \mathbb{R}^2$$

3D curve:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} F_x(t) \\ F_y(t) \\ F_z(t) \end{pmatrix} =: F(t); F : \mathbb{R} \mapsto \mathbb{R}^3$$
Parametric Curves

Advantage:
- Arbitrary curves in arbitrary dimensions

Still a problem:
- Unintuitive
 - *Try to find a formula for a specific curve you have in mind!*
- Hard to program with
 - *Deal with arbitrary mathematical functions*

Solution:
- Restrict yourself to specific class of functions

Spline Curves

Description = basis functions + coefficients

\[
F(t) = \sum_{i=0}^{n} P_i B_i(t) = (x(t), y(t))
\]

\[
x(t) = \sum_{i=0}^{n} P_i^x B_i(t)
\]

\[
y(t) = \sum_{i=0}^{n} P_i^y B_i(t)
\]

- Same basis functions for all coordinates
Polynomial Curves

Polynomial Curves:
- Restrict to polynomial functions of degree ≤ m:
 \[x = \sum_{i=0}^{m} b_i t^i \]
- Note: \(b_i \) are vectors!
- Example curve in 2D:
 \[
 \begin{pmatrix}
 x \\
 y
 \end{pmatrix}
 = \sum_{i=0}^{m} \begin{pmatrix}
 b_{x,i} \\
 b_{y,i}
 \end{pmatrix} t^i
 \]

Advantages:
- Computationally easy to handle
 - \(b_0 \ldots b_m \) uniquely describe curve (finite storage, easy to represent)

Disadvantages:
- Not all shapes representable
 - Partially fix with piecewise functions later (splines)
- Still not very intuitive
 - Fix: represent polynomials in different basis
Assign GEOMETRIC meaning to coefficients (base)

- Approximate/interpolate set of positions, derivatives, etc..

Parametric Curves

Commonly used classes:

- Polynomials
 - Bézier curves, Hermite interpolation etc.
- Piecewise polynomials
 - B-splines
- Rational and piecewise-rational curves
 - Rational Bézier curves, rational B-splines (NURBS)
Interpolate “Control” Points: Lagrange Polynomials

Use points we want to interpolate as controls

- Polynomial degree = number of input points

 ![Lagrange Polynomials](https://www.ibiblio.org/e-notes/Splines/lagrange.html)

Basis Functions: Lagrange Polynomials

- Given: m+1 parameter values \(t_0 \ldots t_m \)
- Define

\[
L_i^m(t) := \prod_{j=0 \ldots m, j \neq i} \frac{t - t_j}{t_i - t_j}; i = 0 \ldots m
\]

- Clear from definition:
 - All \(L_i^m \) are polynomials of degree \(m \)
 - \(L_i^m(t_k) = \begin{cases} 1; i = k \\ 0; \text{else} \end{cases} \)
 - In particular, all \(L_i^m \) are linearly independent!
Lagrangr Polynomials (cont)

• L_i^m are **linearly independent** & there are $m+1$ of them - basis for polynomials of degree up to m
• Can write any polynomial of degree up to m as

$$F(t) = \sum_{i=0}^{m} L_i^m(t_j) \cdot b_i$$

• In addition, we have for all i: $F(t_i) = b_i$
 – *In other words, the polynomial interpolates the points (t_i, b_i)*

Lagrange Polynomials

• https://www.ibiblio.org/e-notes/Splines/lagrange.html
 • Oscillates unpredictably 😞
Other Option: Hermite Curves

Geometrically-oriented coefficients
- 2 positions + 2 tangents

Require $F(0)=P_0, F(1) = P_1, F'(0)=T_0, F'(1)=T_1$

Define basis function per requirement

$$F(t) = P_0 h_{00}(t) + P_1 h_{01}(t) + T_0 h_{10}(t) + T_1 h_{11}(t)$$
Hermite Basis Functions

\[F(t) = P_0 h_{00}(t) + P_1 h_{01}(t) + T_0 h_{10}(t) + T_1 h_{11}(t) \]

To enforce \(C(0) = P_0 \), \(C(1) = P_1 \), \(C'(0) = T_0 \), \(C'(1) = T_1 \), basis should satisfy

\[h_{ij}(t), \ j = 0,1, \ t \in [0,1] \]

<table>
<thead>
<tr>
<th>curve</th>
<th>(F(0))</th>
<th>(F(1))</th>
<th>(F'(0))</th>
<th>(F'(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_{00}(t))</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h_{01}(t))</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h_{10}(t))</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(h_{11}(t))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Hermite Cubic Basis

Can satisfy with cubic polynomials as basis

\[h_{ij}(t) = a_3 t^3 + a_2 t^2 + a_1 t + a_0 \]

Obtain - solve 4 linear equations in 4 unknowns for each basis function

\[h_{ij}(t), \ j = 0,1, \ t \in [0,1] \]

<table>
<thead>
<tr>
<th>curve</th>
<th>(F(0))</th>
<th>(F(1))</th>
<th>(F'(0))</th>
<th>(F'(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_{00}(t))</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h_{01}(t))</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h_{10}(t))</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(h_{11}(t))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Hermite Cubic Basis

Four polynomials that satisfy the conditions

\[h_{00}(t) = t^2(2t - 3) + 1 \quad h_{01}(t) = -t^2(2t - 3) \]
\[h_{10}(t) = t(t - 1)^2 \quad h_{11}(t) = t^2(t - 1) \]

https://codepen.io/liorda/pen/KrvBwr

Bézier Curves

Definition:

- Bézier curve is a polynomial curve that uses **Bernstein polynomials** as basis

\[F(t) = \sum_{i=0}^{m} b_i B_i^m(t) \]

- \(b_i \) are called **control points** of Bézier curve

- Control polygon obtained by connecting control points with line segments
Bernstein Polynomials

\[B_i^m(t) := \binom{m}{i} t^i (1-t)^{m-i} ; i = 0..m; t \in [0,1], \]

\[\binom{m}{i} = \frac{m!}{(m-i)!i!} \]

Clicker Question

\[B_i^m(t) := \binom{m}{i} t^i (1-t)^{m-i} ; i = 0..m; t \in [0,1], \]

\[\binom{m}{i} = \frac{m!}{(m-i)!i!} \]

What is the value of \(B_0^m \) **at** t=0?
A. Depends on m
B. 1
C. 0
Bernstein Polynomials

\[B_i^m(t) := \binom{m}{i} t^i (1-t)^{m-i}; \quad i = 0..m; \quad t \in [0,1], \]

\[\binom{m}{i} = \frac{m!}{(m-i)!i!} \]

• Graph for degree m=1:

• Graph for m=2:

• Graph for m=3:
Bernstein Polynomials

\[B_i^m(t) := \binom{m}{i} t^i (1-t)^{m-i}; i = 0..m; t \in [0,1] \]

Properties:

• \(B_i^m(t) \) is a polynomial of degree \(m \)

• \(B_i^m(t) \geq 0 \) for \(t \in [0,1] \); \(B_0^m(0) = 1; B_i^m(0) = 0 \) for \(i \neq 0 \)

• \(B_i^m(t) = B_{m-i}^m(1-t) \)

Bernstein Polynomials

\[B_i^m(t) := \binom{m}{i} t^i (1-t)^{m-i}; i = 0..m; t \in [0,1] \]

Properties:

• \(B_i^m(t) \) has exactly one maximum in the interval \(0..1 \). It is at \(t=i/m \) (proof: compute derivative…)

• \(\) W/o proof: all \((m+1)\) functions \(B_i^m \) are linearly independent
 – Thus they form a basis for all polynomials of degree \(\leq m \)
Bernstein Polynomials

More properties

• \[\sum_{i=0}^{m} B_i^m(t) = (t + (1 - t))^m = 1 \]
 – (proof: apply Binomial Theorem to definition)

• \[B_i^m(t) = t \cdot B_{i-1}^{m-1}(t) + (1 - t) \cdot B_i^{m-1}(t) \]
 – (proof on board)

• Important (later) for fast evaluation algorithm of Bézier curves (de Casteljau algorithm)

Properties of Bézier Curves
(Pierre Bézier, Renault, about 1970)

Easy to see:

• Endpoints \(b_0 \) and \(b_m \) of control polygon interpolated & corresponding parameter values are t=0 and t=1

Without proof for the moment (will be easier to show later):

• Bézier curve is tangential to control polygon at endpoints
• Curve lies within convex hull of control points
• Curve is affine invariant
• There is a fast, recursive evaluation algorithm
Mini Bonus [1%]

Prove that Bezier (Hermite, and Lagrange) curves are affine invariant

- Affine invariant: invariant under linear transformations + translation
- Post your proof as private post on piazza
- First 5 correct respondents will get 1% toward final grade