Notes

- The Incredibles?
- This Friday: deadline for final project approval

Beyond SSD

- Hack:
 - Add virtual bones to control the SSD better
- Advanced solutions:
 - Interpolate from several example poses
 - Simulate volumetric deformation (at least a skin layer or two on top of rigid bones)
- One simple solution: use FFD’s around joints
 - Put a 3D FFD grid around joint (or over muscle), parameterize its motion according to joint angle
 - Control exactly what sort of deformation you get
 - But problematic for nearby joints, doesn’t get full volumetric effects without a lot of work, ...

Motion Capture

- We now have some basic tools to build elaborate characters
 - FK/IK/dynamics to move skeleton
 - Skinning around skeleton
 - Particle systems or rigid bodies for passive secondary motion (e.g. clothes, chains, the environment...)
- Still difficult to animate human motion
 - So many DOF even with simplified skeleton
- So record real motion instead: motion capture (mocap)

Mocap basics

- “Film” an actor
- Estimate skeleton pose from video at every frame: gives motion curves for joint angles
- Replay motion curves applied to CG character
- Big issues:
 - How to do the filming and pose estimation
 - How to “clean up” the output
 - How to use the cleaned up output for a particular task
Estimation

- Several techniques possible:
 - “Markerless mocap”: use computer vision to estimate what’s going on (hard to do accurately!)
 - Mechanical measurement: strap a device to actor that directly measures rotations
 - Really annoying to wear
 - “Marker-based mocap”: stick several markers on tight-fitting suit, figure out where they are, estimate skeleton from that
 - Marker system could be electromagnetic
 - More common: retroreflective (ping pong balls)

Marker-based mocap

- Note: similar problem to match-move
 - See September 29 slides
- Usually mocap is better posed
 - Lots of highly synchronized cameras
 - E.g. 6-12 (for Polar Express, 72!)
 - High speed frame rates, strobe light to reduce motion blur
 - E.g. 120Hz
 - Well-calibrated set-up
 - Film in infrared, markers show up really well - much less ambiguity
 - Also makes the strobe much less annoying!
 - But still issues: e.g. obscured markers

Skeleton estimation

- First stage: figure out where markers are
 - And which is which
 - Really want to know what the joint angles of an underlying skeleton are
- Issues:
 - Markers are on skin, which is some distance from bone, and which deforms and slides around
 - Human skeleton itself is more complex (joints have 6 DOF constrained in weird and wonderful ways)
 - Often want to allow for stretchable bones in computer representation (e.g. near shoulders)
 - Data could have bad errors, or be missing
 - Calibration: start actor in a known pose

How to use the data

- Output from a mocap session: one long stream of joint angles
- Can replay, but what if that’s not quite the motion you want?
 - Could conceivably just edit the motion curves (use mocap as a starting point), but painful - full detail is already there
 - What about video games?
- Two points to make:
 - Satisfying constraints (e.g. avoiding “foot-skate”)
 - Massaging data to do what’s needed
Foot skate

- Most of the time, mocap data is of a person with at least one foot planted on the ground
- Errors or modifications to joint angles and global position/orientation may cause foot to move
 - Called “foot skate”
- Very noticeable to audience: kills suspension of disbelief
- Need to figure out from data when/where a foot is stuck on ground
- Then enforce that as a constraint in subsequent uses of the data

Motion Graphs

- Often a good step in dealing with a lot of data: cut it up into small clips
 - E.g. taking a step, a jump, a kick, ...
- Identify start and end poses in these clips that are “close” (ignoring global position/orientation)
 - With a little massaging, can jump from one clip to another smoothly
- Make a directed graph out of the result:
 - Each arc is a clip
 - Each node is a start and/or end pose