Movable Objects

- Before assumed $m_{\text{object}} >> m_{\text{particle}}$
 - Then effect on object is negligible
 - If not, still calculate new v_{rel} as above
 - But change v_{object} and v_{particle} with “impulses”
- Unknown impulse I (force * time) applied to particle and opposite $-I$ to object
- New velocities:
 - $v_{\text{particle}}^{\text{new}} = v_{\text{particle}} + \frac{I}{m_{\text{particle}}}$
 - $v_{\text{object}}^{\text{new}} = v_{\text{object}} - \frac{I}{m_{\text{object}}}$
- New relative velocity in terms of I gives equation to solve for I:
 $$v_{\text{rel}}^{\text{new}} = v_{\text{rel}} + \left(\frac{1}{m_{\text{particle}}} + \frac{1}{m_{\text{object}}} \right) I$$

Friction

- Friction slows down the relative tangential velocity
- Causes a tangential force F_T that opposes sliding, according to
 - Magnitude of normal force F_N pressing on particle
 - And friction coefficient μ
- Basic Coulomb law:
 - If kinetic friction ($v_{\text{rel}} \neq 0$) then $|F_T| = \mu |F_N|$ and is in a direction most opposing sliding
 - If static friction ($v_{\text{rel}} = 0$) then $|F_T| \leq \mu |F_N|$

Implementing Friction

- Gets really messy to directly use friction forces (really hard to get true static friction!)
- Instead integrate into relative velocity update
- Integrating normal and friction force over the collision time and dividing by mass gives Coulomb friction in terms of velocity changes:
 - Static friction: $|\Delta v_T| \leq \mu |\Delta v_N|$ (and then $v_T = 0$)
 - Kinetic friction: $\Delta v_T = -\mu |\Delta v_N| \frac{v_T}{|v_T|}$
 - Assuming direction of friction force is always opposing the initial tangential velocity
 - Combine into one formula for new relative tangential velocity:
 $$v_T^{\text{after}} = \max \left(0, 1 - \frac{\mu |\Delta v_N|}{v_T^{\text{before}}} \right) v_T^{\text{before}}$$
Collisions so far

- We now have a black box collision processing routine
 - Input:
 - particle velocity before
 - (maybe object velocity and masses)
 - object normal
 - parameters ε and μ
 - Intermediate:
 - Relative velocity, split into normal and tangential components
 - Output:
 - new particle velocity
 - (maybe new object velocity)
- How do we use this in time integration?

Simple collision algorithm

- After each time step, check if particles collided with objects
 - If so, change velocities according to routine
- Fails catastrophically for more interesting cases
 - New velocity may or may not get particle out next time step - is that another collision?
 - Is it ok to have particles inside (or on the wrong side of) objects any time?

Backing up time

- Can avoid some problems by processing collision when it happens, not after the fact
- Figure out when collision happens (or at least get close to time of collision, but not later than)
- Apply velocity update then
- Potential problems:
 - Hard to figure out time
 - Could involve a lot of work per time step (unpredictable)

Simultaneous collision resolution

- Ignore exact timing and order of collisions during a time step
- Begin with old position x^{old}
- New candidate position x^{new}
- If collision occurred, process with $v^{\text{avg}} = (x^{\text{new}}-x)/\Delta t$ to get new post-collision velocity v^{after}
- Then change x^{new} to $x^{after} = x^{\text{old}} + \Delta t \cdot v^{after}$
- Iterate until no collisions remain
Notes on collision resolution

- This works really well for inelastic collisions
- Can use a large Δt: separate collision processing from particle physics
 - Can take many small steps to from x_{old} to x_{new} if stability demands it
- Problems arise with elastic collisions
 - May not converge
 - Bouncing block problem: a block won’t come to rest on the floor

Elastic collision resolution

- Start with x_{old} and v_{old}
- Advance to x_{new}
- If collision, apply elastic collision law to v_{old} to get v^2
- Take $x^2 = x_{\text{new}} + \Delta t (v^2 - v_{\text{old}})$ or reintegrate from x_{old}, v^2 if you can afford it
 - Repeat elastic step a few times if you want, and there are still collisions with x^2
- If still collision, apply INELASTIC collision law to $v_{\text{avg}} = (x^2 - x_{\text{old}})/\Delta t$ to get v_{after}
- Change x^2 to $x_{\text{after}} = x_{\text{old}} + \Delta t v_{\text{after}}$
- Repeat as needed

One last problem

- Due to round-off error, or pathological geometry, may still go into a long loop resolving collisions
- So cut loop off after a small number of iterations
- Failsafe: take $v_{\text{after}} = 0$, $x_{\text{new}} = x_{\text{old}}$
 - May look weird, still could have issues for moving objects especially
- Last resort: accept the penetration, apply a repulsion force to eventually move the object out from the object(s)