Notes

- Class will remain here
 - (Hugh Dempster 101 if you are not here)
- Pixie was supposed to be installed in the undergrad environment
 - Will make sure it’s there one way or another
- Assignment 1 clarification

Differential Rendering

- For adding CG shadows in a real scene
- Put in rough estimate of true scene geometry, colour, material etc.
- Render rough estimate once without CG object, once with CG object:
 - Difference is shadow (or caustics, ...)
 - Composite onto real scene (addition)
- Then render CG object alone
 - Composite “atop”

Image-based lighting

- For getting CG lights just right (can be easily faked though) or environment map for reflections
- Take high-dynamic range (HDR) image of silver ball
- Do the math to get the environment map
 - www.debevec.org

Example
Camera Control

- Text: 3.4, 4.1
- Three situations to think about:
 - CG film
 - Everything is synthetic, so control the camera however you want (artistic control or algorithms + artistic tweaking)
 - Video games
 - Fully automatic control, algorithm has to be smart enough to (almost) always be useful
 - Compositing vfx on real footage
 - Have to make sure CG camera matches the parameters and motion of real camera

Peeling off camera parameters

- Essentially always want to separate out amount of perspective = field-of-view = lens diameter = ...
 - Should only change for a specific cinematographic reason (zooms, etc.)
 - I.e. perspective projection is a separate part of the parameterization
- Similarly depth-of-field and focal plane is usually fixed except for some cinematographic effects
- Separate out skews (avoid them, except for a few cheesy effects)

CG film camera

- Simplest case: fix it once for shot
 - Too many moving shots are distracting anyhow... Alexander Nevsky
- More generally: just more motion curves
 - But how to parameterize?
 - Can view camera as simply a 4x4 matrix transformation - but using a separate spline for each matrix entry is horrid

More peeling

- Usually separate out selection of image plane
 - Scaling actually already handled by perspective, but no harm allowing redundant control
 - Normally image is centred
 - For some architectural shots, can keep vertical lines vertical...
 - Zooms
- Left with specifying position and orientation of camera
Possible parameterizations

- Could just do motion curves for position \((x,y,z)\) and Euler angles (heading, pitch, roll)
 - Intensely annoying to keep an object of interest in centre of view
- Could instead do \(\text{LOOKFROM} (x,y,z)\)
 - \(\text{LOOKAT} (x,y,z)\) and \(\text{VUP} (x,y,z)\)
 - Position is at \(\text{LOOKFROM}\)
 - Camera z-direction is parallel to \(\text{LOOKAT-LOOKFROM}\)
 - Camera x-direction is \(\text{VUP} \times \text{CAMZ}\) (careful!)
 - Camera y-direction is \(\text{CAMZ} \times \text{CAMX}\)
 - Usually \(\text{VUP}\) is \((0,1,0)\) but can control roll by moving it around --- or a separate roll angle

Special Cases

- Circling around target
 - Parameterize target position \((x,y,z)\), distance from target, and angles (heading, pitch, roll)
 - Very useful for interactive modeling also
- Over the shoulder
- Following path of object
- All of these especially useful for video games

Over the shoulder

- Glue the camera to the object’s position motion curve or a displacement from it
- Either use object’s orientation for camera
- Or get \(\text{CAMZ}\) from motion curve tangent and use \(\text{VUP}\) to define \(\text{CAMX, CAMY}\)
 - Maybe additional roll angle for feeling of inertia or G-forces

Path-following camera

- Simplest approach: reuse object trajectory for camera - just lag
 - Camera position \(t\) frames behind object
 - Doesn’t handle acceleration/deceleration well!
 - Camera position distance \(d\) behind object
 - Need to do arc-length parameterization
- But could be too jerky for comfort
 - Need to smooth out trajectory
 - Replace control points with weighted averages
Path-following camera orientation

- CAMZ should be pointing forwards along trajectory
- Simplest approach: use trajectory tangent (first derivative of curve)
 - But doesn’t really point at object
- So use LOOKAT/VUP approach
 - Again, additional roll angle useful for controlling feeling of inertia, G-forces

Image Space Constraints

- Another approach for camera specification
- Specify some world space points that must stay at some image space points
 - From there calculate camera parameters
- Special cases are tedious to derive

Through-the-Lens

- Problem is that image-space constraints on world-space points are highly nonlinear
 - Directly solving is painful
- Instead differentiate constraints
 - Constrain time derivative of camera parameters to follow time derivative of constraints
 - Constraint on derivatives is linear: \(f(p)=0 \) becomes \(\frac{df}{fp(p)} \cdot \frac{dp}{dt} = 0 \)
 - If not enough constraints, minimize camera change in some way - constrained optimization