How to handle complexity: 1 previous strategy + 3 more

• derive new data to show within view
• change view over time
• facet across multiple views
• reduce items/attributes within single view

Reminder
This table has 100 million items
• pair up, discuss how to have scalable approach, create sketch to illustrate
– [8 min]
– socrative: true when done

Filter & Aggregate

Idiom: FilmFinder
• dynamic queries/filters for items
– tightly coupled interaction and visual encoding idioms, so user can immediately see results of action

Idiom: Crossfilter
• item filtering
– coordinate axes/controls combined
– all scanned histogram builders update when any ranges change

Idiom: Small multiples
• encoding same
data: none shared
– idiom: crossfilter
different items
different condition keys,
same graph keys), same attributes
expression values for node colors
– (same network layout for nodes/games)
navigation: shared
Idiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data
 - new table: keys are bins, values are counts
 - pattern can change dramatically depending on discretization
- bin size crucial
- opportunity for interaction: control bin size on the fly

Idiom: scented widgets

- augmented widgets show information scent
- better cues for information foraging: show whether
- in drilling down further vs. looking elsewhere
- concise use of space: histogram on slider
Distortion costs and benefits
- benefits
 - combine focus and context information in single view
- costs
 - length comparisons impaired
 - network/tree topology
 - comparisons unfeasible
 - connections, constraints
 - effects of distortion unclear
 - original structure unclear
 - object constancy/trackability maybe impaired

Capturing & using material reflectance
- reflectance measurement: interaction of light with real materials (spheres)
 - result: 104 high-res images of material
 - each image 4MP pixels
 - goal: image synthesis
 - simulate completely new materials
 - need for more concise model
 - 104 images 4MP pixels = 400M dims
 - want concise model with meaningful limbs
 - how shiny/greasy/metallic
 - DR to the rescue!

Linear DR
- first try: PCA (linear)
 - result: error falls off sharply after ~45 dimensions
 - scree plot: error vs number of dimensions in lowD projection
 - problem: physically impossible intermediate points when simulating new materials
 - specular highlights cannot have holes!

Nonlinear DR
- second try: charting (nonlinear DR technique)
 - scree plot suggests 10-15 dims
 - note: dim estimate depends on technique used!

Finding semantics for synthetic dimensions
- look for meaning in scatterplots
 - synthetic dims created by algorithm but named by human analysis
 - points represent real-world images (spheres)
 - people inspect images corresponding to points to decide if set could have meaningful name
 - cross-check meaning
 - arrows show simulated images (teapots) made from model
 - check if those match dimension semantics

Understanding synthetic dimensions
- plot: Specular-Metallic vs Diffuseness-Glossiness
 - meaningful name
 - specular highlights cannot have holes!

Capturing & using material reflectance
- reflectance measurement: interaction of light with real materials (spheres)
 - result: 104 high-res images of material
 - each image 4MP pixels
 - goal: image synthesis
 - simulate completely new materials
 - need for more concise model
 - 104 images 4MP pixels = 400M dims
 - want concise model with meaningful limbs
 - how shiny/greasy/metallic
 - DR to the rescue!

Linear DR
- first try: PCA (linear)
 - result: error falls off sharply after ~45 dimensions
 - scree plot: error vs number of dimensions in lowD projection
 - problem: physically impossible intermediate points when simulating new materials
 - specular highlights cannot have holes!

Nonlinear DR
- second try: charting (nonlinear DR technique)
 - scree plot suggests 10-15 dims
 - note: dim estimate depends on technique used!

Finding semantics for synthetic dimensions
- look for meaning in scatterplots
 - synthetic dims created by algorithm but named by human analysis
 - points represent real-world images (spheres)
 - people inspect images corresponding to points to decide if set could have meaningful name
 - cross-check meaning
 - arrows show simulated images (teapots) made from model
 - check if those match dimension semantics

Understanding synthetic dimensions
- plot: Specular-Metallic vs Diffuseness-Glossiness
 - meaningful name
 - specular highlights cannot have holes!

Capturing & using material reflectance
- reflectance measurement: interaction of light with real materials (spheres)
 - result: 104 high-res images of material
 - each image 4MP pixels
 - goal: image synthesis
 - simulate completely new materials
 - need for more concise model
 - 104 images 4MP pixels = 400M dims
 - want concise model with meaningful limbs
 - how shiny/greasy/metallic
 - DR to the rescue!

Linear DR
- first try: PCA (linear)
 - result: error falls off sharply after ~45 dimensions
 - scree plot: error vs number of dimensions in lowD projection
 - problem: physically impossible intermediate points when simulating new materials
 - specular highlights cannot have holes!

Nonlinear DR
- second try: charting (nonlinear DR technique)
 - scree plot suggests 10-15 dims
 - note: dim estimate depends on technique used!

Finding semantics for synthetic dimensions
- look for meaning in scatterplots
 - synthetic dims created by algorithm but named by human analysis
 - points represent real-world images (spheres)
 - people inspect images corresponding to points to decide if set could have meaningful name
 - cross-check meaning
 - arrows show simulated images (teapots) made from model
 - check if those match dimension semantics

Understanding synthetic dimensions
- plot: Specular-Metallic vs Diffuseness-Glossiness
 - meaningful name
 - specular highlights cannot have holes!

Capturing & using material reflectance
- reflectance measurement: interaction of light with real materials (spheres)
 - result: 104 high-res images of material
 - each image 4MP pixels
 - goal: image synthesis
 - simulate completely new materials
 - need for more concise model
 - 104 images 4MP pixels = 400M dims
 - want concise model with meaningful limbs
 - how shiny/greasy/metallic
 - DR to the rescue!

Linear DR
- first try: PCA (linear)
 - result: error falls off sharply after ~45 dimensions
 - scree plot: error vs number of dimensions in lowD projection
 - problem: physically impossible intermediate points when simulating new materials
 - specular highlights cannot have holes!

Nonlinear DR
- second try: charting (nonlinear DR technique)
 - scree plot suggests 10-15 dims
 - note: dim estimate depends on technique used!