Information Visualization
Aggregate & Filter 2

Tamar Munzner
Department of Computer Science
University of British Columbia

Lect 19, 17 Mar 2020

News
• Online lectures and office hours start today, using Zoom: https://zoom.us/j/9016202871
• Lecture mode
 – Plan: I’ll livestream with video + audio + screenshare, will also try recording.
 – You’ll be able to just join the session
 – Please connect audio-only, no video, to avoid congestion
 – You’ll be auto-muted. If you have a question use the Show Hand (click on Participants, button is at the bottom of the popup window), I’ll unmute you myself
• Office hours mode
 – Please do connect with video if possible, in addition to audio
 – I’ll use the Waiting Room feature, where I will individually allow you in
 – If I’m already talking to somebody else I’ll briefly let you know, then put you back in VR until it’s your turn.
• P1-P3 marks
 • increasingly bimodal
 • P3 marks released
 • bimodal distribution

Spatial aggregation
• MAUP: Modifiable Areal Unit Problem
 – changing boundaries of cartographic regions can yield dramatically different results
 – scale effects

Gerrymandering: MAUP for political gain
Example: Gerrymandering in PA

Idiom: GrouseFlocks
• data: compound graphs
 – network
 – derived or interactively chosen
 – cluster hierarchy step it

Idiom: Hierarchical parallel coordinates
• dynamic item aggregation
• derived data: hierarchical clustering
• encoding:

Schedule shift
• Nothing due this Wed
• M2 & M3 on schedule
 – M2 due Wed Mar 25
 – M3 due Wed Apr 8
• Combined F5/F6
 – will go out Thu Mar 26, due Wed Apr 1

Foundations F1-F4

Cluster
• classification of items into similar bins
 – based on similarity measure
 • Euclidean distance, Pearson correlation
 – partitioning algorithms
 – divisive into set of bins
 – K-means (it is manual or automatically
 – hierarchical algorithms
 • produce “similarity tree” (dendrogram): cluster hierarchy
 – agglomerative clustering: start w/ each node as own cluster, then iteratively merge
 – cluster hierarchy: derived data used w/ many dynamic aggregation idioms
 – cluster more homogeneous than whole dataset
 • statistical measures & distribution more meaningful

Idiom: Hierarchical Clustering (visible)
System: Hierarchical Clustering (bottom)

Idiom: aggregation via hierarchical clustering (visible)

News
• Labs will be Zoom + Canvas scheduling
 – different Zoom URL for each TA, stay tuned
 – you can sign up for reserved slots in advance, or check for availability on the fly
 – more details soon
• Final exam plan still TBD
 – but will not be in person
 – you are free to leave campus when you want (but are not required to do so)

Nonlinear DR

- second try: charting (nonlinear DR technique)
 - scree plot suggests 10-15 dims
 - note: dim estimate depends on technique used!
 - dimension-oriented tasks
 - naming synthesized dims; mapping synthesized dims to original dims
 - cluster-oriented tasks
 - verifying clusters; naming clusters; matching clusters and classes

Nonlinear dimensionality reduction

- pro: can handle curved rather than linear structure
- cons: lose all ties to original dims/attrs
- many techniques proposed:
 - many literatures: visualization, machine learning, optimization, psychology, ...
 - techniques: t-SNE, MDS (multidimensional scaling), charting, isomaps, LLE, ...
 - t-SNE: excellent for clusters
 - but some tricks remain:
 - MDS: confusingly, entire family of techniques, both linear and nonlinear
 - minimize stress or strain metrics
 - early formulations equivalent to PCA

Linear DR

- first try: PCA (linear)
 - result: errors fall off sharply after ~45 dimensions
 - problem: physically impossible intermediate points when simulating new materials
 - speculative highlights could have holes!

Dimensionality reduction & visualization

- why do people do DR?
 - improve performance of downstream algorithm
 - avoid curse of dimensionality
- data analyses
 - abstract tasks when visualizing DR data
- minimization tasks
 - naming synthesized dims; mapping synthesized dims to original dims
 - cluster-oriented tasks
 - verifying clusters; naming clusters; matching clusters and classes

Finding semantics for synthetic dimensions

- look for meaning in scatterplots
 - screen plots w/ nearest neighbors
 - points represent real-world images (spheres)
 - points represent real-world images (spheres)
 - people inspect images corresponding to points to decide if axis could have meaningful name
 - cross-check meaning
 - arrows show simulated images (isomaps) made from model
 - check if those match dimensional semantics

VDA with DR example: nonlinear vs linear

- DR for computer graphics reflectance model
 - goal: simulate how light bounces off materials to make realistic pictures
 - computer graphics: BRDF (reflectance)
 - goal: simulate how light bounces off materials to make realistic pictures
 - computer graphics: BRDF (reflectance)
- capturing & using material reflectance
 - result: 104 high-res images of material
 - each image 4M pixels
 - goal: capture most of variance with minimal error
 - computer graphics: BRDF (reflectance)
 - goal: simulate how light bounces off materials to make realistic pictures
 - computer graphics: BRDF (reflectance)
 - goal: capture most of variance with minimal error
 - computer graphics: BRDF (reflectance)

Understanding synthetic dimensions

- Specular-Metallic
- Diffuse-Glossy
- transparent

Dimensionality reduction

- attribute aggregation
 - derive low-dimensional target space from high-dimensional measured space
 - capture most of variance with minimal error
 - true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
 - bias factors, hidden variables

Linear dimensionality reduction

- principal components analysis (PCA)
 - finding axes: first with most variance, second with next most, ...
 - describe location of each point as linear combination of weights for each axis
 - mapping synthesized dims to original dims

Nonlinear dimensionality reduction

- use to capture most of variance with minimal error
- techniques: t-SNE, MDS (multidimensional scaling), charting, isomaps, LLE, ...
- t-SNE: excellent for clusters
- but some tricks remain:
 - MDS: confusingly, entire family of techniques, both linear and nonlinear
 - minimize stress or strain metrics
 - early formulations equivalent to PCA

Finding semantics for synthetic dimensions

- look for meaning in scatterplots
 - screen plots w/ nearest neighbors
 - points represent real-world images (spheres)
 - people inspect images corresponding to points to decide if axis could have meaningful name
 - cross-check meaning
 - arrows show simulated images (isomaps) made from model
 - check if those match dimensional semantics

VDA with DR example: nonlinear vs linear

- DR for computer graphics reflectance model
 - goal: simulate how light bounces off materials to make realistic pictures
 - computer graphics: BRDF (reflectance)
 - goal: simulate how light bounces off materials to make realistic pictures
 - computer graphics: BRDF (reflectance)
 - goal: capture most of variance with minimal error
 - computer graphics: BRDF (reflectance)
 - goal: simulate how light bounces off materials to make realistic pictures
 - computer graphics: BRDF (reflectance)
 - goal: capture most of variance with minimal error
 - computer graphics: BRDF (reflectance)

Linear DR

- first try: PCA (linear)
 - result: errors fall off sharply after ~45 dimensions
 - problem: physically impossible intermediate points when simulating new materials
 - speculative highlights could have holes!
Idiom: DoITrees Revisited

- combine information within single view
- elide
 - selectively filter and aggregate
- superimpose layer
 - local lens
- distortion design choices
 - region shape: radial, rectilinear, complex
 - how many regions: one, many
 - region extent: local, global
 - interaction metaphor
- distortion costs and benefits
 - benefits
 - combine focus and context information in single view
 - costs
 - length comparisons impaired
 - network/tree topology comparisons unaffected
 - effects of distortion unclear if original structure unfamiliar
 - effects of distortion unclear if original structure unfamiliar
 - object constancy/tracking impaired

Idiom: Fisheye Lens

- distort geometry
 - shape: radial
 - focus: single extent
 - extent: local
 - metaphor: draggable lens

System: TreeJuxtaposer

Credits

- Visualization Analysis and Design (Ch 13, 14)
- Alex Lex & Miriah Meyer, http://dataviscourse.net/