Information Visualization

Color

Zhiping Liu, Tamara Munzner
Department of Computer Science
University of British Columbia
Lecture 12/13, 13 & 25 Feb 2020

Upcoming

• Foundations 4: out Feb 13, due Feb 26 (right after reading week)
• Programming 3: out Feb 13, due Mar 4 (1 week after reading week)
• D3 videos/readings week 6
 – Color and Sex legends with D3.js (30 min)
 – Scatter Plot with Mersos (46 min)
 – Circles on a Map (42 min)
 – Line Charts with Multiple Lines (42 min)
• Quiz 6, due by Fri Feb 14, 8am
• Team formation, due by Fri Feb 14 11:59pm

Outline

• Color in vision theory
 • Color channels in vis
 – Decomposition
 – L*a*b*
 – Other color spaces
 – Color deficiency
 – Interaction with others
 • Practical advice
 – Colormaps
 – Tools and programming libraries

Outline

• Color in vision theory
• Color channels in vis
 – Decomposition
 – L*a*b*
 – Other color spaces
 – Color deficiency
 – Interaction with others
• Practical advice
 – Colormaps
 – Tools and programming libraries

Opponent process

• perceptual processing before optic nerve
 – one achromatic luminance channel (L*)
 – edge detection through luminance contrast
 – 2 chroma channels
 – red-green (a*) & yellow-blue axis (b*)

Color in Vision Theory

Light

If I tell you the wavelength, can you tell what color you are seeing?

Color/Lightness constancy: Illumination conditions

Light

If I tell you the wavelength, can you tell what color you are seeing?

Color/Lightness constancy: Illumination conditions

Color Appearance

• Given L, a, b, can we tell what color it is?
• If I tell you the wavelength, can you tell what color you are seeing?

Color/Lightness constancy: Illumination conditions

Contrast with background

Black and blue? White and gold?

Eye anatomy

Cone and Rod Cells on Retina

~120 million rods: black vs. white
~5-6 million cones: color
R 63% - G 31% - B 6%

Channels: the big picture

Magnitude Channels: Ordered Attributes
 • Position on common scale
 • Length (1D size)
 • Area (2D size)
 • Depth (3D spatial)

Identity Channels: Categorical Attributes
 • Color hues
 • Shape
 • Color saturation
 • Transparency
 • Volume (3D spatial)

Magnitude Channels: Ordered Attributes
 • Position on common scale
 • Length (1D size)
 • Area (2D size)
 • Depth (3D spatial)

Identity Channels: Categorical Attributes
 • Color hues
 • Shape
 • Color saturation
 • Transparency
 • Volume (3D spatial)

Channels: the big picture

Magnitude Channels: Ordered Attributes
 • Position on common scale
 • Length (1D size)
 • Area (2D size)
 • Depth (3D spatial)

Identity Channels: Categorical Attributes
 • Color hues
 • Shape
 • Color saturation
 • Transparency
 • Volume (3D spatial)

Channels: the big picture

Magnitude Channels: Ordered Attributes
 • Position on common scale
 • Length (1D size)
 • Area (2D size)
 • Depth (3D spatial)

Identity Channels: Categorical Attributes
 • Color hues
 • Shape
 • Color saturation
 • Transparency
 • Volume (3D spatial)
Color Appearance
- Given L, a, b, can we tell what color it is?
- Chromatic adaptation
- Luminance adaptation
- Simultaneous contrast
- Spatial effects
- Viewing angle
- ...

Cognition (beyond retina, in brain)
- Given the L, a, b values, the lighting conditions, the surroundings, viewing angle ...
- Can you tell me what this color is?
 - Middle part of an apple
 - Bottom part of an apple
 - The branch

Name the colours

Categorical color: limited number of discriminable bins
- human perception built on relative comparisons
 - great if color contiguous
- surprisingly bad for absolute comparisons
- noncontiguous small regions of color
 - fewer bins than you want
 - rule of thumb: 6-12 bins, including background and highlights

Ordered color: Rainbow is poor default
- problems
 - perceptually unordered
 - perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
 - alternatives
 - large-scale structure fewer hues
 - fine structure: multiple hues with monotonically increasing luminance (eg viridis, python)

Ordered color: Rainbow is poor default
- problems
 - perceptually unordered
 - perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
 - alternatives
 - large-scale structure fewer hues
 - fine structure: multiple hues with monotonically increasing luminance (eg viridis, python)

Ordered color: Rainbow is poor default
- problems
 - perceptually unordered
 - perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
 - alternatives
 - large-scale structure fewer hues
 - fine structure: multiple hues with monotonically increasing luminance (eg viridis, python)

Ordered color: Rainbow is poor default
- problems
 - perceptually unordered
 - perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
 - alternatives
 - large-scale structure fewer hues
 - fine structure: multiple hues with monotonically increasing luminance (eg viridis, python)

Ordered color: Rainbow is poor default
- problems
 - perceptually unordered
 - perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
 - alternatives
 - large-scale structure fewer hues
 - fine structure: multiple hues with monotonically increasing luminance (eg viridis, python)

Ordered color: Rainbow is poor default
- problems
 - perceptually unordered
 - perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
 - alternatives
 - large-scale structure fewer hues
 - fine structure: multiple hues with monotonically increasing luminance (eg viridis, python)

Ordered color: Rainbow is poor default
- problems
 - perceptually unordered
 - perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
 - alternatives
 - large-scale structure fewer hues
 - fine structure: multiple hues with monotonically increasing luminance (eg viridis, python)

Ordered color: Rainbow is poor default
- problems
 - perceptually unordered
 - perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
 - alternatives
 - large-scale structure fewer hues
 - fine structure: multiple hues with monotonically increasing luminance (eg viridis, python)

Ordered color: Rainbow is poor default
- problems
 - perceptually unordered
 - perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
 - alternatives
 - large-scale structure fewer hues
 - fine structure: multiple hues with monotonically increasing luminance (eg viridis, python)
Ordered color: Rainbow is poor default

- Problems
 - perceptually unordered
 - cannot order non-categorical
- Benefits
 - fine-grained structure visible and
 - small regions need high saturation
- Alternatives
 - large-scale structure: fewer hues
 - fine structure: multiple hues with
 - monotonically increasing luminance
 - segmented rainbows for binned or
 - categorical

Ordered color: how many bins?

- Many color spaces
 - HSL/HSV: somewhat better for encoding
 - hue/saturation wheel intuitive
 - beware: only pseudo-perceptual!
 - lightness (L) or value (V) ≠ luminance or L*
 - luminance, fix saturation
 - good for encoding
 - but not standard graphics tools colormap.
 - CE \(L^*V^* \): good for comparison
 - \(L^* \) pseudo-perceptually linear
 - \(V^* \) pseudo-perceptually hue-nonsensitive
 - RGB: good for display hardware,
 - poor for encoding

Opponent color and color deficiency

- Perceptual processing before optic nerve
 - one achromatic luminance channel (L*)
 - edge detection through luminance contrast
 - 2 channels:
 - red-green (a*) & yellow-blue axis (b*)
- "color blind": one axis has degraded acuity
 - 8% of men are red/green color deficient
 - blue/yellow is rare

Many color spaces

- HSL/HSV: somewhat better for encoding
 - hue/saturation wheel intuitive
 - beware: only pseudo-perceptual!
 - lightness (L) or value (V) ≠ luminance or L*
 - luminance, fix saturation
 - good for encoding
 - but not standard graphics tools colormap
 - CE \(L^*V^* \): good for comparison
 - \(L^* \) pseudo-perceptually linear
 - \(V^* \) pseudo-perceptually hue-nonsensitive
 - RGB: good for display hardware
 - poor for encoding

Ordered color: What about the background?

- Marks with high luminance on a background with high luminance
 - edge detection through luminance contrast
 - colorblind-safe, monotonically

Ordered color: How many bins?

- Many color spaces
 - HSL/HSV: somewhat better for encoding
 - hue/saturation wheel intuitive
 - beware: only pseudo-perceptual!
 - lightness (L) or value (V) ≠ luminance or L*
 - luminance, fix saturation
 - good for encoding
 - but not standard graphics tools colormap
 - CE \(L^*V^* \): good for comparison
 - \(L^* \) pseudo-perceptually linear
 - \(V^* \) pseudo-perceptually hue-nonsensitive
 - RGB: good for display hardware
 - poor for encoding

Designing for color deficiency

- Blue-Orange is safe

Designing for color deficiency: Avoid encoding by hue alone

- redundantly encode
 - vary luminance
 - change shape

How to use color in visualization

- Use color encoding:
 - Is this channel categorical?
 - Is this channel sequential?
 - Are you putting a lot of data on this channel?

Many color spaces

- HSL/HSV: somewhat better for encoding
 - hue/saturation wheel intuitive
 - beware: only pseudo-perceptual!
 - lightness (L) or value (V) ≠ luminance or L*
 - luminance, fix saturation
 - good for encoding
 - but not standard graphics tools colormap
 - CE \(L^*V^* \): good for comparison
 - \(L^* \) pseudo-perceptually linear
 - \(V^* \) pseudo-perceptually hue-nonsensitive
 - RGB: good for display hardware
 - poor for encoding

Ordered color: What about the background?

- Marks with high luminance on a background with high luminance
 - edge detection through luminance contrast
 - colorblind-safe, monotonically

Ordered color: How many bins?

- Many color spaces
 - HSL/HSV: somewhat better for encoding
 - hue/saturation wheel intuitive
 - beware: only pseudo-perceptual!
 - lightness (L) or value (V) ≠ luminance or L*
 - luminance, fix saturation
 - good for encoding
 - but not standard graphics tools colormap
 - CE \(L^*V^* \): good for comparison
 - \(L^* \) pseudo-perceptually linear
 - \(V^* \) pseudo-perceptually hue-nonsensitive
 - RGB: good for display hardware
 - poor for encoding

Designing for color deficiency

- Blue-Orange is safe

Ordered color: What about the background?

- Marks with high luminance on a background with high luminance
 - edge detection through luminance contrast
 - colorblind-safe, monotonically

Ordered color: How many bins?

- Many color spaces
 - HSL/HSV: somewhat better for encoding
 - hue/saturation wheel intuitive
 - beware: only pseudo-perceptual!
 - lightness (L) or value (V) ≠ luminance or L*
 - luminance, fix saturation
 - good for encoding
 - but not standard graphics tools colormap
 - CE \(L^*V^* \): good for comparison
 - \(L^* \) pseudo-perceptually linear
 - \(V^* \) pseudo-perceptually hue-nonsensitive
 - RGB: good for display hardware
 - poor for encoding
Colormaps

- Categorical
- Sequential
- Diverging
- Bivariate

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Color Encoding

- Encode
- Map

Tools and Libraries in Practice

Adobe Color Picker
- https://color.adobe.com/create
- For general design purpose, not particularly for visualization

ColorBrewer
- http://www.colorbrewer2.org
- Limited customization: 2 parameters

Colorgorical
- http://vrl.cs.brown.edu/color
- Highly customized: #colors, perceptual distance, name uniqueness, hue, lightness range...
- Only targeted at categorical data

Color management in D3
- D3-color
 - https://github.com/d3/d3-color
 - Conversion to/from different color spaces
 - Low-level computations
- D3-scale
 - https://github.com/d3/d3-scale
 - Customizes your own color scale using d3.scaleSequential() and d3.scaleOrdinal()
 - Use case: generate color schemes using the web tools mentioned before, then use d3-scale to implement it

ColorBrewer
- http://www.colorbrewer2.org
- saturation and area example: size affects salience!
- Limited customization: 2 parameters

Credits
- Visualization Analysis and Design (Ch 10)
- Enrico Bertini, NYU Tandon
- Alex Lex & Miriah Meyer, http://dataviscourse.net/
- Jeffrey Heer https://courses.cs.washington.edu/courses/cse512/19sp/
-