Interactive Views

Idiom: Animated transitions
• smooth interpolation from one state to another
 – best case for animation
 – staging to reduce cognitive load
 – example: animated transitions in statistical data graphics

Idiom: Animated transitions - visual encoding change
• smooth transition from one state to another
 – best case for animation
 – staging to reduce cognitive load

Idiom: Animated transition - tree detail
• animated transition
 – network drilldown/rollup

Idiom: Animated transition - bar detail
• example: hierarchical bar chart
 – add detail during transition to new level of detail

Idiom: Re-encode
System: Tableau
• how: data-driven reordering by selecting column
 – derive new data to show within view
 – change view over time
 – facet across multiple views
 – reduce items/attributes within single view

Idiom: Change parameters
• widgets and controls – sliders, buttons, radio buttons, checkboxes, drop/down/comboboxes
 – pros – clear affordances, self-documenting (with labels)
 – cons – use screen space
 – design choices – separated vs interleaved

Idiom: Change over time
• change any of the other choices
 – encoding itself
 – parameters
 – arrange: rearrange, reorder
 – aggregation level, what is filtered...
 – interaction entails change

Idiom: Change order/arrangement
• what: simple table
 • how: data-driven reordering
 • why: find extreme values, trends

Idiom: Reorder
System: DataStripes
• what: table with many attributes
 • how: data-driven reordering by selecting column
 • why: find correlations between attributes

Idiom: Re-encode
System: Tableau
• stacked bars
 – easy to compare
 – first segment
 • total bar
 • align to different segment
 • supports flexible comparison

Idiom: Change alignment
System: LineUp
• APGI genome browser – scaling T/R
 – interactions
 – tooltip detail on demand on hover
 – expand/contract chromosomes
 – expand/contract control panels

Idiom: Change parameters
• derive new data to show within view
• change view over time
• facet across multiple views
• reduce items/attributes within single view

How to handle complexity: 1 previous strategy + 3 more

Upcoming
• Foundations 3: out Thu Jan 30, due Wed Feb 5 6pm
• Programming 2: out Thu Jan 30, due Wed Feb 12 6pm
• D3 videos/reading week 4
 – The General Update Pattern of D3.js (60 min)
 – Interaction with Undirected Flow Data Flow (16 min)
 – Read Reusable D3 Components
 – Quiz 4, due by Fri Jan 31, 3am

Tamara Munzner
Department of Computer Science
University of British Columbia

Lect 8/9/10, 30 Jan & 4/6 Feb 2020
University of British Columbia
Tamara Munzner

Interactive Views

Idiom: Animated transitions
• smooth interpolation from one state to another
 – alternative to jump cuts, supports item tracking
 – uses screen space
 – supports flexible comparison
 – easy to compare

Interactive Views

How to handle complexity: 1 previous strategy + 3 more

Upcoming
• Foundations 3: out Thu Jan 30, due Wed Feb 5 6pm
• Programming 2: out Thu Jan 30, due Wed Feb 12 6pm
• D3 videos/reading week 4
 – The General Update Pattern of D3.js (60 min)
 – Interaction with Undirected Flow Data Flow (16 min)
 – Read Reusable D3 Components
 – Quiz 4, due by Fri Jan 31, 3am

Tamara Munzner
Department of Computer Science
University of British Columbia

Lect 8/9/10, 30 Jan & 4/6 Feb 2020
University of British Columbia
Tamara Munzner
Interactive transitions quiz: 4 Ways Budget

- **what changed?**

Interaction technology
- what do you design for?
 - mouse & keyboard on desktop!
 - large screens, fewer, multiple clicks
 - small screens, no hover, just tap
- gestures from video / sensors?
 - ergonomic reality vs movie bonfire
 - eye tracking!

Selection
- selection: basic operation for most interaction
- design choices
 - how many selection types?
 - interaction modalities
 - click/tap (heavily used) x hover (lightweight but not available on most touchscreen)
 - multiple click types (drag/click option-click, ...)
 - passing beyond click/hover (brushing or nearly vs distant)
- application semantics
 - adding vs selection set vs replacing selection
 - set selection be self
 - no single vs nothing selected if click on background
 - primary vs secondary (ex: see near and nodes in network)
- group membership (attaches items, some group...)

Manipulate
- change viewpoint
- changes which items are visible within view
- camera metaphor
 - pan/translate/scroll
 - touch interaction on mobile?
- highlight selection without complete redraw of view (graphics front buffer)
- unexpected behaviour
 - transition into containing mark causes aspect ratio (shape) change

Topo/m
- popup information for selection
 - hover or click
 - can provide useful additional detail on demand?
 - beware: does not support overview!
 - always consider if there’s a way to visually encode directly to provide overview?
 - “If you make a rollover of a tooltip, assume nobody will see it. If it’s important, make it explicit.”
 - -- Gregor Aisch, NYTimes

Rule of thumb: Responsiveness is required
- visual feedback: three rough categories
 - 0.1 second: visual perceptual processing
 - 1 second: immediate response
 - 10 seconds: brief tasks
- bounded response after dialog box: mental model of heavyweight operation (file load)
- scalability considerations
 - highlight selection without complete redraw of view (graphics from buffer)
 - show hourglass for multi-second operations (check for cancel/undo)
 - show progress bar for long operations (process in background thread)
 - rendering speed when item count is large (guaranteed frame rate)
 - show progress bar for long operations (process in background thread)
 - fluid task switching: different visual encodings support different tasks

Idiom: Scrollytelling
- how: navigate page by scrolling (panning down)
- pros:
 - familiar & intuitive, from standard web browsing
 - linear (up and down) vs possible overload of click-based interface choices
- cost:
 - full-screen mode may lack affordances
 - scrolling, no direct access
 - unexpected behaviour
 - continuous control for discrete steps
 - can provide useful additional detail on demand?
 - beware: does not support overview!
 - always consider if there’s a way to visually encode directly to provide overview?
 - “If you make a rollover of a tooltip, assume nobody will see it. If it’s important, make it explicit.”
 - -- Gregor Aisch, NYTimes

Scrollytelling examples
- change viewpoint
 - changes which items are visible within view
- camera metaphor
 - pan/translate/scroll
 - touch interaction on mobile?

Idiom: Animated transition + constrained navigation
- example: icicle plot
 - transition into containing mark causes aspect ratio (shape) change

Interaction benefits
- interaction pros
 - major advantage of computer-based vs paper-based visualization
 - flexible, powerful, intuitive
 - exploratory data analysis: change as you go during analysis process
 - fluid task switching: different visual encoding supports different tasks
 - animated transitions provide excellent support
 - empirical evidence that animated transitions help people stay oriented

Idiom: Animated transition + constrained navigation
- example: icicle plot
 - transition into containing mark causes aspect ratio (shape) change

Idiom: Unconstrained vs constrained
- un constrained navigation
 - easy to implement for designer
 - hard to control for user
 - easy to overwhelm/encumber
- constrained navigation
 - typically uses animated transitions
 - trajectory automatically computed based on selection
 - just click: selection ends up framed nicely in final viewport

Interaction limitations
- interaction has a time cost
 - sometimes minor, sometimes significant
 - degenerates to human-powered search in worst case
- remembering previous state imposes cognitive load
- controls may take screen real estate
 - an invisible functionality may be difficult to discover (clear of affordances)
- users may not interact as planned by designer
 - NYTimes logs show: 90% don’t interact beyond scrollytelling - Aisch, 2016

[Idiom: Scrollytelling](https://www.bloomberg.com/graphics/)
- how: navigate page by scrolling (panning down)
- pros:
 - familiar & intuitive, from standard web browsing
 - linear (up and down) vs possible overload of click-based interface choices
- cost:
 - full-screen mode may lack affordances
 - scrolling, no direct access
 - unexpected behaviour

- example geographic map
 - simple zoom, only viewpoint changes, shapes preserved

[Idiom: Animated transition + constrained navigation](https://www.bloomberg.com/graphics/)
- example: icicle plot
 - transition into containing mark causes aspect ratio (shape) change

[Idiom: Scrollytelling](https://www.bloomberg.com/graphics/)
- how: navigate page by scrolling (panning down)
- pros:
 - familiar & intuitive, from standard web browsing
 - linear (up and down) vs possible overload of click-based interface choices
- cost:
 - full-screen mode may lack affordances
 - scrolling, no direct access
 - unexpected behaviour
 - continuous control for discrete steps
 - can provide useful additional detail on demand?
 - beware: does not support overview!
 - always consider if there’s a way to visually encode directly to provide overview?
 - “If you make a rollover of a tooltip, assume nobody will see it. If it’s important, make it explicit.”
 - -- Gregor Aisch, NYTimes
Dynamic visual layering

- Interactive based on selection
- One-hop neighbour highlighting demos: click vs hover (lightweight)

Partition into views

- How to divide data between views
 - Split into regions by attributes
 - Encodes association between items using spatial proximity
 - Order of splits has major implications for how patterns are visible

- No strict dividing line
 - View: high/based
 - Contiguous region in which visually encoded data is shown on the display
 - Glyphs: small icons
 - Object with external structure that arises from multiple marks

Partition into Side-by-Side Views

- Encode Manipulate Facet Reduce
- Arrange Map Change Select Navigate Express Separate Rate, Frequency, ...

From categorical and ordered attributes

Why?

How?

What?

Dynamic visual layering

- Interactive based on selection
- One-hop neighbour highlighting demos: click vs hover (lightweight)

Partition into views

- How to divide data between views
 - Split into regions by attributes
 - Encodes association between items using spatial proximity
 - Order of splits has major implications for how patterns are visible

- No strict dividing line
 - View: high/based
 - Contiguous region in which visually encoded data is shown on the display
 - Glyphs: small icons
 - Object with external structure that arises from multiple marks

Partition into Side-by-Side Views

- Encode Manipulate Facet Reduce
- Arrange Map Change Select Navigate Express Separate Rate, Frequency, ...

From categorical and ordered attributes

Why?

How?

What?

Dynamic visual layering

- Interactive based on selection
- One-hop neighbour highlighting demos: click vs hover (lightweight)

Partition into views

- How to divide data between views
 - Split into regions by attributes
 - Encodes association between items using spatial proximity
 - Order of splits has major implications for how patterns are visible

- No strict dividing line
 - View: high/based
 - Contiguous region in which visually encoded data is shown on the display
 - Glyphs: small icons
 - Object with external structure that arises from multiple marks

Partition into Side-by-Side Views

- Encode Manipulate Facet Reduce
- Arrange Map Change Select Navigate Express Separate Rate, Frequency, ...

From categorical and ordered attributes

Why?

How?

What?

Dynamic visual layering

- Interactive based on selection
- One-hop neighbour highlighting demos: click vs hover (lightweight)

Partition into views

- How to divide data between views
 - Split into regions by attributes
 - Encodes association between items using spatial proximity
 - Order of splits has major implications for how patterns are visible

- No strict dividing line
 - View: high/based
 - Contiguous region in which visually encoded data is shown on the display
 - Glyphs: small icons
 - Object with external structure that arises from multiple marks

Partition into Side-by-Side Views

- Encode Manipulate Facet Reduce
- Arrange Map Change Select Navigate Express Separate Rate, Frequency, ...

From categorical and ordered attributes

Why?

How?

What?

Dynamic visual layering

- Interactive based on selection
- One-hop neighbour highlighting demos: click vs hover (lightweight)

Partition into views

- How to divide data between views
 - Split into regions by attributes
 - Encodes association between items using spatial proximity
 - Order of splits has major implications for how patterns are visible

- No strict dividing line
 - View: high/based
 - Contiguous region in which visually encoded data is shown on the display
 - Glyphs: small icons
 - Object with external structure that arises from multiple marks

Partition into Side-by-Side Views

- Encode Manipulate Facet Reduce
- Arrange Map Change Select Navigate Express Separate Rate, Frequency, ...

From categorical and ordered attributes

Why?

How?

What?

Dynamic visual layering

- Interactive based on selection
- One-hop neighbour highlighting demos: click vs hover (lightweight)

Partition into views

- How to divide data between views
 - Split into regions by attributes
 - Encodes association between items using spatial proximity
 - Order of splits has major implications for how patterns are visible

- No strict dividing line
 - View: high/based
 - Contiguous region in which visually encoded data is shown on the display
 - Glyphs: small icons
 - Object with external structure that arises from multiple marks

Partition into Side-by-Side Views

- Encode Manipulate Facet Reduce
- Arrange Map Change Select Navigate Express Separate Rate, Frequency, ...

From categorical and ordered attributes

Why?

How?

What?