Upcoming

- Foundations 3: out Thu Jan 30, due Wed Feb 5 6pm
- Programming 2: out Thu Jan 30, due Wed Feb 12 6pm
- D3 videos/readings week 4
 - The General Update Pattern of D3.js [60 min]
 - Interaction with Unidirectional Data Flow [16 min]
 - Read: Reusable D3 Components
- Quiz 4, due by Fri Jan 31, 8am
Interactive Views
How to handle complexity: 1 previous strategy + 3 more

- Derive

- Derive new data to show within view
- Change view over time
- Facet across multiple views
- Reduce items/attributes within single view

Manipulate

- Change
 - Adapt to
 - Adjust

- Select
 - Choose
 - Sort

- Navigate
 - Move
 - Transition

Facet

- Juxtapose
 - Side-by-side
 - Overlaid

- Partition
 - Divide
 - Segment

- Superimpose
 - Integrate
 - Overlay

Reduce

- Filter
 - Narrow
 - Exclude

- Aggregate
 - Summarize
 - Group

- Embed
 - Integrate
 - Overlay
Manipulate

- Change over Time
- Navigate
- Select

- Item Reduction
 - Zoom
 - Geometric or Semantic
 - Pan/Translate
 - Constrained
Change over time

• change any of the other choices
 – encoding itself
 – parameters
 – arrange: rearrange, reorder
 – aggregation level, what is filtered...

 – interaction entails change
Idiom: **Re-encode**

System: **Tableau**

made using Tableau, http://tableausoftware.com
Idiom: **Change parameters**

- widgets and controls
 - sliders, buttons, radio buttons, checkboxes, dropdowns/comboboxes

- pros
 - clear affordances, self-documenting (with labels)

- cons
 - uses screen space

- design choices
 - separated vs interleaved
 - controls & canvas

slide inspired by: Alexander Lex, Utah
Idiom: **Change order/arrangement**

- **what:** simple table
- **how:** data-driven reordering
- **why:** find extreme values, trends

[Sortable Bar Chart](https://bl.ocks.org/mbostock/3885705)
Idiom: **Reorder**

- **what**: table with many attributes
- **how**: data-driven reordering by selecting column
- **why**: find correlations between attributes

System: **DataStripes**

[http://carlmanaster.github.io/datastripes/]
Idiom: **Change alignment**

- stacked bars
 - easy to compare
 - first segment
 - total bar
- align to different segment
 - supports flexible comparison

System: LineUp

Shiny example

- APGI genome browser
 - tooling: R/Shiny
 - interactivity
 - tooltip detail on demand on hover
 - expand/contract chromosomes
 - expand/contract control panes

https://gallery.shinyapps.io/genome_browser/
Idiom: **Animated transitions**

- smooth interpolation from one state to another
 - alternative to jump cuts, supports item tracking
 - best case for animation
 - staging to reduce cognitive load
- example: animated transitions in statistical data graphics

vimeo.com/19278444

Idiom: **Animated transitions - visual encoding change**

- smooth transition from one state to another
 - alternative to jump cuts, supports item tracking
 - best case for animation
 - staging to reduce cognitive load

[Stacked to Grouped Bars](http://bl.ocks.org/mbostock/3943967)
Idiom: **Animated transition - tree detail**

- animated transition
 - network drilldown/rollup

[Collapsible Tree](https://bl.ocks.org/mbostock/4339083)
Idiom: **Animated transition - bar detail**

- example: hierarchical bar chart
 - add detail during transition to new level of detail

[Hierarchical Bar Chart](https://bl.ocks.org/mbostock/1283663)
Interactive transitions quiz: 4 Ways Budget

• what changed?

Interaction technology

• what do you design for?
 – mouse & keyboard on desktop?
 • large screens, hover, multiple clicks
 – touch interaction on mobile?
 • small screens, no hover, just tap
 – gestures from video / sensors?
 • ergonomic reality vs movie bombast
 – eye tracking?

slide inspired by: Alexander Lex, Utah

Data visualization and the news - Gregor Aisch (37 min)
vimeo.com/182590214

I Hate Tom Cruise - Alex Kauffmann (5 min)
www.youtube.com/watch?v=QXLfT9sFcbc
Selection

• selection: basic operation for most interaction

• design choices

 – how many selection types?
 • interaction modalities
 • click/tap (heavyweight) vs hover (lightweight but not available on most touchscreens)
 • multiple click types (shift-click, option-click, …)
 • proximity beyond click/hover (touching vs nearby vs distant)
 • application semantics
 – adding to selection set vs replacing selection
 – can selection be null?
 – ex: toggle so nothing selected if click on background
 – primary vs secondary (ex: source/target nodes in network)
 – group membership (add/delete items, name group, …)
Highlighting

• highlight: change visual encoding for selection targets
 – visual feedback closely tied to but separable from selection (interaction)

• design choices: typical visual channels
 – change item color
 • but hides existing color coding
 – add outline mark
 – change size (ex: increase outline mark linewidth)
 – change shape (ex: from solid to dashed line for link mark)

• unusual channels: motion
 – motion: usually avoid for single view
 • with multiple views, could justify to draw attention to other views
Tooltips

- popup information for selection
 - hover or click
 - can provide useful additional detail on demand
 - beware: does not support overview!
 - always consider if there’s a way to visually encode directly to provide overview
 - “If you make a rollover or tooltip, assume nobody will see it. If it’s important, make it explicit.”
 - Gregor Aisch, NYTimes
Rule of thumb: **Responsiveness is required**

- **visual feedback: three rough categories**
 - **0.1 seconds: perceptual processing**
 - subsecond response for mouseover highlighting - ballistic motion
 - **1 second: immediate response**
 - fast response after mouseclick, button press - Fitts’ Law limits on motor control
 - **10 seconds: brief tasks**
 - bounded response after dialog box - mental model of heavyweight operation (file load)
- **scalability considerations**
 - highlight selection without complete redraw of view (graphics frontbuffer)
 - show hourglass for multi-second operations (check for cancel/undo)
 - show progress bar for long operations (process in background thread)
 - rendering speed when item count is large (guaranteed frame rate)
Manipulate

- Change over Time
- Navigate
- Select

- Item Reduction
 - Zoom
 - Geometric or Semantic
 - Pan/Translate
 - Constrained
Navigate: Changing viewpoint/visibility

• change viewpoint
 – changes which items are visible within view

• camera metaphor
 – pan/translate/scroll
 • move up/down/sideways
Idiom: **Scrolllytelling**

- **how:** navigate page by scrolling (panning down)
- **pros:**
 - familiar & intuitive, from standard web browsing
 - linear (only up & down) vs possible overload of click-based interface choices
- **cons:**
 - full-screen mode may lack affordances
 - scrolljacking, no direct access
 - unexpected behaviour
 - continuous control for discrete steps

https://eagereyes.org/blog/2016/the-scrolllytelling-scourge

[How to Scroll, Bostock](https://bost.ocks.org/mike/scroll/)

slide inspired by: Alexander Lex, Utah
Scrollytelling examples

slide inspired by: Alexander Lex, Utah
Navigate: Changing viewpoint/visibility

• change viewpoint
 – changes which items are visible within view

• camera metaphor
 – pan/translate/scroll
 • move up/down/sideways
 – rotate/spin
 • typically in 3D
 – zoom in/out
 • enlarge/shrink world == move camera closer/further
 • geometric zoom: standard, like moving physical object
Navigate: Unconstrained vs constrained

• unconstrained navigation
 – easy to implement for designer
 – hard to control for user
 • easy to overshoot/undershoot
• constrained navigation
 – typically uses animated transitions
 – trajectory automatically computed based on selection
 • just click; selection ends up framed nicely in final viewport
Idiom: Animated transition + constrained navigation

• example: geographic map
 – simple zoom, only viewport changes, shapes preserved

[Zoom to Bounding Box](https://bl.ocks.org/mbostock/4699541)
Idiom: **Animated transition + constrained navigation**

- example: icicle plot
 - transition into containing mark causes aspect ratio (shape) change

[Zoomable Icicle](https://bl.ocks.org/mbostock/1005873)
Interaction benefits

• interaction pros
 – major advantage of computer-based vs paper-based visualization
 – flexible, powerful, intuitive
 • exploratory data analysis: change as you go during analysis process
 • fluid task switching: different visual encodings support different tasks
 – animated transitions provide excellent support
 • empirical evidence that animated transitions help people stay oriented
Interaction limitations

• interaction has a time cost
 – sometimes minor, sometimes significant
 – degenerates to human-powered search in worst case
• remembering previous state imposes cognitive load
• controls may take screen real estate
 – or invisible functionality may be difficult to discover (lack of affordances)
• users may not interact as planned by designer
 – NYTimes logs show ~90% don’t interact beyond scrollytelling - Aisch, 2016
Facet

- **Juxtapose**

- **Partition**

- **Superimpose**
Juxtapose and coordinate views

- Share Encoding: Same/Different
 - Linked Highlighting

- Share Data: All/Subset/None

- Share Navigation
Idiom: Linked highlighting

- see how regions contiguous in one view are distributed within another
 - powerful and pervasive interaction idiom

- encoding: different
 - multiform

- data: all shared

- aka: brushing and linking

Linked views

• unidirectional vs bidirectional linking

http://www.ralphstraumann.ch/projects/swiss-population-cartogram/
http://peterbeshai.com/linked-highlighting-react-d3-reflux/
Linked views: Multidirectional linking

http://buckets.peterbeshai.com/

https://medium.com/@pbesh/linked-highlighting-with-react-d3-js-and-reflux-16e9c0b2210b
Video: Visual Analysis of Historical Hotel Visitation Patterns

https://www.youtube.com/watch?v=Tzsv6wkZoiQ
http://www.cs.ou.edu/~weaver/improvise/examples/hotels/
Complex linked multiform views

System: Pathfinder

https://www.youtube.com/watch?v=aZF7AC8aNXo
Idiom: Overview-detail views

- **encoding**: same
- **data**: subset shared
- **navigation**: shared
 - bidirectional linking

- **differences**
 - viewpoint
 - (size)

- **special case**: *birds-eye map*

System: Google Maps

Idiom: **Overview-detail navigation**

- encoding: same
- data: subset shared
- navigation: shared
 - unidirectional linking
 - select in small overview
 - change extent in large detail view

https://www.highcharts.com/demo/dynamic-master-detail

https://bl.ocks.org/mbostock/34f08d5e11952a80609169b7917d4172
Overview-detail

- multiscale: three viewing levels
 - linked views
 - dynamic filtering
 - tooling: processing
 (modern version: p5js.org)

System: MizBee

https://www.youtube.com/watch?v=86p7brwuzu2g
https://www.youtube.com/watch?v=UcKDbGqHsdE
Flows: R/Shiny

https://gallery.shinyapps.io/TSupplyDemand/
Idiom: **Parallel sets**

[Diagram showing parallel sets with categories for survived and perished, sex, age, and class.]
Idiom: Mosaic plots

http://www.theusrus.de/blog/understanding-mosaic-plots/

http://www.theusrus.de/Mondrian/

http://www.theusrus.de/blog/making-movies/
Idiom: **Small multiples**

- **encoding:** same
- **data:** none shared
 - different attributes for node colors
 - (same network layout)
- **navigation:** shared

System: **Cerebral**

Coordinate views: Design choice interaction

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>All</td>
<td>Subset</td>
</tr>
<tr>
<td>Same</td>
<td>Redundant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Different</td>
<td>Multiform</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **why juxtapose views?**
 - benefits: eyes vs memory
 - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
 - costs: display area, 2 views side by side each have only half the area of one view
Why not animation?

• disparate frames and regions: comparison difficult
 – vs contiguous frames
 – vs small region
 – vs coherent motion of group

• safe special case
 – animated transitions
System: **Improvise**

- investigate power of multiple views
 - pushing limits on view count, interaction complexity
 - how many is ok?
 - open research question
- reorderable lists
 - easy lookup
 - useful when linked to other encodings

Quiz: Multiple views

• gerrymandering

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
<th>All</th>
<th>Subset</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same</td>
<td>Redundant</td>
<td>Overview/Detail</td>
<td>Small Multiples</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Different</td>
<td>Multiform</td>
<td>Multiform, Overview/Detail</td>
<td>No Linkage</td>
<td></td>
</tr>
</tbody>
</table>

Quiz: Multiple views

- **terrain**

 ![Image of Antarctic Terrain](https://earthobservatory.nasa.gov/images/144367/taking-measure-of-antarctic-terrain)

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same</td>
<td>All: Redundant</td>
</tr>
<tr>
<td></td>
<td>Subset: Overview/Detail</td>
</tr>
<tr>
<td></td>
<td>None: Small Multiples</td>
</tr>
<tr>
<td>Different</td>
<td>All: Multiform</td>
</tr>
<tr>
<td></td>
<td>Subset: Multiform, Overview/Detail</td>
</tr>
<tr>
<td></td>
<td>None: No Linkage</td>
</tr>
</tbody>
</table>

Relative Elevation (m)

October 26 - November 23, 2018
Quiz: Multiple views

• where the wild things glow

Facet

- Juxtapose

- Partition

- Superimpose
Partition into views

• how to divide data between views
 – split into regions by attributes
 – encodes association between items using spatial proximity
 – order of splits has major implications for what patterns are visible

Partition into Side-by-Side Views

Superimpose Layers
Juxtapose and Coordinate Multiple Side-by-Side Views
Share Data: All/Subset/None
Sharing: All/Subset
Multiple, Over view/Detail
None
Redundant
No Linkage
Small Multiples
Over view/Detail
Linked Highlighting
Partitioning: List alignment

• single bar chart with grouped bars
 – split by state into regions
 • complex glyph within each region showing all ages
 – compare: easy within state, hard across ages

• small-multiple bar charts
 – split by age into regions
 • one chart per region
 – compare: easy within age, harder across states
Partitioning: Recursive subdivision

- split by neighborhood
- then by type
- then time
 - years as rows
 - months as columns
- color by price
- neighborhood patterns
 - where it’s expensive
 - where you pay much more for detached type

Partitioning: Recursive subdivision

- switch order of splits
 - type then neighborhood

- switch color
 - by price variation

- type patterns
 - within specific type, which neighborhoods inconsistent

Partitioning: Recursive subdivision

- different encoding for second-level regions
 – choropleth maps

System: HIVE

Partitioning: Recursive subdivision

- size regions by sale counts
 - not uniformly
- result: treemap

Superimpose layers

• **layer**: set of objects spread out over region
 – each set is visually distinguishable group
 – extent: whole view

• design choices
 – how many layers, how to distinguish?
 • encode with different, nonoverlapping channels
 • two layers achievable, three with careful design
 – small static set, or dynamic from many possible?
Static visual layering

• foreground layer: roads
 – hue, size distinguishing main from minor
 – high luminance contrast from background
• background layer: regions
 – desaturated colors for water, parks, land areas
• user can selectively focus attention
• “get it right in black and white”
 – check luminance contrast with greyscale view

Superimposing limits

• few layers, but many lines
 – up to a few dozen
 – but not hundreds

• superimpose vs juxtapose: empirical study
 – superimposed for local, multiple for global
 – tasks
 • local: maximum, global: slope, discrimination
 – same screen space for all multiples vs single superimposed

Idiom: **Trellis plots**

- superimpose within same frame
 - color code by year

- partitioning
 - split by site, rows are wheat varieties

- main-effects ordering
 - derive value of median for group, use to order
 - order rows within view by variety median
 - order views themselves by site median
Dynamic visual layering

• interactive based on selection
• one-hop neighbour highlighting demos: click vs hover (lightweight)

Partition into views

- how to divide data between views
 - split into regions by attributes
 - encodes association between items using spatial proximity
 - order of splits has major implications for what patterns are visible

- no strict dividing line
 - **view**: big/detailed
 - contiguous region in which visually encoded data is shown on the display
 - **glyph**: small/iconic
 - object with internal structure that arises from multiple marks
How?

Encode

- **Arrange**
 - Express
 - Separate
- **Order**
 - Align
- **Use**
 - Map
 - from **categorical** and **ordered** attributes
 - Color
 - Hue
 - Saturation
 - Luminance
 - Size, Angle, Curvature, ...
 - Shape
 - + • □ △
 - Motion
 - Direction, Rate, Frequency, ...

Manipulate

- **Change**

Facet

- **Juxtapose**

Reduce

- **Filter**
- **Aggregate**
- **Embed**
Credits

• Visualization Analysis and Design (Ch 11, 12)
• Alex Lex & Miriah Meyer, http://dataviscourse.net/
• Effectiveness of Animation in Trend Visualization.
 George Robertson, Roland Fernandez, Danyel Fisher, Bongshin Lee, and John Stasko.
 https://www.cc.gatech.edu/~stasko/papers/infovis08-anim.pdf