Information Visualization
Interactive Views

Tamara Munzner
Department of Computer Science
University of British Columbia

Lect 8/9/10, 30 Jan & 4/6 Feb 2020

https://www.cs.ubc.ca/~tmm/courses/436V-20
Upcoming

• Foundations 3: out Thu Jan 30, due Wed Feb 5 6pm
• Programming 2: out Thu Jan 30, due Wed Feb 12 6pm
• D3 videos/readings week 4
 – The General Update Pattern of D3.js [60 min]
 – Interaction with Unidirectional Data Flow [16 min]
 – Read: Reusable D3 Components
• Quiz 4, due by Fri Jan 31, 8am
Interactive Views
How to handle complexity: 1 previous strategy + 3 more

- Derive
 - derive new data to show within view
 - change view over time
 - facet across multiple views
 - reduce items/attributes within single view

- Manipulate
 - Change
 - Select
 - Navigate

- Facet
 - Juxtapose
 - Partition
 - Superimpose

- Reduce
 - Filter
 - Aggregate
 - Embed

Actions:
- Analyze
- Search
- Query
- Consume
- Present
- Enjoy
- Discover
- Produce
- Annotate
- Record
- Derive
- Identify
- Compare
- Summarise

Target known
Target unknown
Location known
Location unknown
Lookup
Locate
Browse
Explore
Manipulate

- **Change over Time**

- **Select**

- **Navigate**
 - **Item Reduction**
 - **Zoom**
 - Geometric or Semantic
 - **Pan/Translate**
 - **Constrained**
Change over time

• change any of the other choices
 – encoding itself
 – parameters
 – arrange: rearrange, reorder
 – aggregation level, what is filtered...

 – interaction entails change
Idiom: **Re-encode**

System: **Tableau**

made using Tableau, http://tableausoftware.com
Idiom: Change parameters

• widgets and controls
 – sliders, buttons, radio buttons, checkboxes, dropdowns/comboboxes

• pros
 – clear affordances, self-documenting (with labels)

• cons
 – uses screen space

• design choices
 – separated vs interleaved
 • controls & canvas

slide inspired by: Alexander Lex, Utah
Idiom: **Change order/arrangement**

- what: simple table
- how: data-driven reordering
- why: find extreme values, trends

[Sortable Bar Chart](https://bl.ocks.org/mbostock/3885705)
Idiom: Reorder

- **what:** table with many attributes
- **how:** data-driven reordering by selecting column
- **why:** find correlations between attributes

System: DataStripes

[http://carlmanaster.github.io/datastripes/]
Idiom: Change alignment

- stacked bars
 - easy to compare
 - first segment
 - total bar
- align to different segment
 - supports flexible comparison

System: LineUp

Shiny example

- APGI genome browser
 - tooling: R/Shiny
 - interactivity
 - tooltip detail on demand on hover
 - expand/contract chromosomes
 - expand/contract control panes

https://gallery.shinyapps.io/genome_browser/
Idiom: **Animated transitions**

- smooth interpolation from one state to another
 - alternative to jump cuts, supports item tracking
 - best case for animation
 - staging to reduce cognitive load

- example: animated transitions in statistical data graphics

Idiom: **Animated transitions - visual encoding change**

- smooth transition from one state to another
 - alternative to jump cuts, supports item tracking
 - best case for animation
 - staging to reduce cognitive load

[Stacked to Grouped Bars](http://bl.ocks.org/mbostock/3943967)
Idiom: **Animated transition - tree detail**

- animated transition
 - network drilldown/rollup

[Collapsible Tree](https://bl.ocks.org/mbostock/4339083)
Idiom: **Animated transition - bar detail**

- example: hierarchical bar chart
 - add detail during transition to new level of detail

[Hierarchical Bar Chart](https://bl.ocks.org/mbostock/1283663)
Interactive transitions quiz: 4 Ways Budget

• what changed?

Interaction technology

• what do you design for?
 – mouse & keyboard on desktop?
 • large screens, hover, multiple clicks
 – touch interaction on mobile?
 • small screens, no hover, just tap

 – gestures from video / sensors?
 • ergonomic reality vs movie bombast

 – eye tracking?

slide inspired by: Alexander Lex, Utah

Data visualization and the news - Gregor Aisch (37 min)
www.vimeo.com/182590214

I Hate Tom Cruise - Alex Kauffmann (5 min)
www.youtube.com/watch?v=QXLfT9sFcbc
Selection

- selection: basic operation for most interaction
- design choices
 - how many selection types?
 - interaction modalities
 - click/tap (heavyweight) vs hover (lightweight but not available on most touchscreens)
 - multiple click types (shift-click, option-click, …)
 - proximity beyond click/hover (touching vs nearby vs distant)
 - application semantics
 - adding to selection set vs replacing selection
 - can selection be null?
 - ex: toggle so nothing selected if click on background
 - primary vs secondary (ex: source/target nodes in network)
 - group membership (add/delete items, name group, …)
Highlighting

• highlight: change visual encoding for selection targets
 – visual feedback closely tied to but separable from selection (interaction)

• design choices: typical visual channels
 – change item color
 • but hides existing color coding
 – add outline mark
 – change size (ex: increase outline mark linewidth)
 – change shape (ex: from solid to dashed line for link mark)

• unusual channels: motion
 – motion: usually avoid for single view
 • with multiple views, could justify to draw attention to other views
Tooltips

• popup information for selection
 – hover or click
 – can provide useful additional detail on demand
 – beware: does not support overview!
 • always consider if there’s a way to visually encode directly to provide overview
 • “If you make a rollover or tooltip, assume nobody will see it. If it's important, make it explicit.”
 – Gregor Aisch, NYTimes
Rule of thumb: **Responsiveness is required**

- **visual feedback: three rough categories**
 - **0.1 seconds: perceptual processing**
 - subsecond response for mouseover highlighting - ballistic motion
 - **1 second: immediate response**
 - fast response after mouseclick, button press - Fitts’ Law limits on motor control
 - **10 seconds: brief tasks**
 - bounded response after dialog box - mental model of heavyweight operation (file load)

- **scalability considerations**
 - highlight selection without complete redraw of view (graphics frontbuffer)
 - show hourglass for multi-second operations (check for cancel/undo)
 - show progress bar for long operations (process in background thread)
 - rendering speed when item count is large (guaranteed frame rate)
Manipulate

- **Change over Time**

- **Select**

- **Navigate**

 - **Item Reduction**
 - Zoom
 - Geometric or Semantic
 - Pan/Translate
 - Constrained

- **Attribute Reduction**

- **Slice**

- **Cut**

- **Project**
Navigate: Changing viewpoint/visibility

- change viewpoint
 - changes which items are visible within view
- camera metaphor
 - pan/translate/scroll
 - move up/down/sideways

→ Navigate
 → Item Reduction

→ Pan/Translate
Idiom: **Scrollytelling**

• how: navigate page by scrolling (panning down)

• pros:
 – familiar & intuitive, from standard web browsing
 – linear (only up & down) vs possible overload of click-based interface choices

• cons:
 – full-screen mode may lack affordances
 – scrolljacking, no direct access
 – unexpected behaviour
 – continuous control for discrete steps

https://eagereyes.org/blog/2016/the-scrollytelling-scourge

[How to Scroll, Bostock](https://bost.ocks.org/mike/scroll/)

slide inspired by: Alexander Lex, Utah
Scrollytelling examples

slide inspired by: Alexander Lex, Utah
Navigate: Changing viewpoint/visibility

• change viewpoint
 – changes which items are visible within view

• camera metaphor
 – pan/translate/scroll
 • move up/down/sideways
 – rotate/spin
 • typically in 3D
 – zoom in/out
 • enlarge/shrink world == move camera closer/further
 • geometric zoom: standard, like moving physical object
Navigate: Unconstrained vs constrained

- unconstrained navigation
 - easy to implement for designer
 - hard to control for user
 - easy to overshoot/undershoot
- constrained navigation
 - typically uses animated transitions
 - trajectory automatically computed based on selection
 - just click; selection ends up framed nicely in final viewport
Idiom: **Animated transition + constrained navigation**

- example: geographic map
 - simple zoom, only viewport changes, shapes preserved

[Zoom to Bounding Box](https://bl.ocks.org/mbostock/4699541)
Idiom: **Animated transition + constrained navigation**

- example: icicle plot
 - transition into containing mark causes aspect ratio (shape) change

[Zoomable Icicle](https://bl.ocks.org/mbostock/1005873)
Interaction benefits

• interaction pros
 – major advantage of computer-based vs paper-based visualization
 – flexible, powerful, intuitive
 • exploratory data analysis: change as you go during analysis process
 • fluid task switching: different visual encodings support different tasks
 – animated transitions provide excellent support
 • empirical evidence that animated transitions help people stay oriented
Interaction limitations

• interaction has a time cost
 – sometimes minor, sometimes significant
 – degenerates to human-powered search in worst case

• remembering previous state imposes cognitive load

• controls may take screen real estate
 – or invisible functionality may be difficult to discover (lack of affordances)

• users may not interact as planned by designer
 – NYTimes logs show ~90% don’t interact beyond scrollytelling - Aisch, 2016
Facet

- **Juxtapose**

- **Partition**

- **Superimpose**
Juxtapose and coordinate views

- Share Encoding: Same/Different
 - *Linked Highlighting*

- Share Data: All/Subset/None

- Share Navigation
Idiom: **Linked highlighting**

- see how regions contiguous in one view are distributed within another
 - powerful and pervasive interaction idiom

- encoding: different
 - *multiform*

- data: all shared

- aka: brushing and linking

Linked views

• unidirectional vs bidirectional linking

http://www.ralphstraumann.ch/projects/swiss-population-cartogram/

http://peterbeshai.com/linked-highlighting-react-d3-reflux/
Linked views: Multidirectional linking

http://buckets.peterbeshai.com/

https://medium.com/@pbesh/linked-highlighting-with-react-d3-js-and-reflux-16e9c0b2210b
Video: Visual Analysis of Historical Hotel Visitation Patterns

https://www.youtube.com/watch?v=Tzsv6wkZoiQ

http://www.cs.ou.edu/~weaver/improvise/examples/hotels/
Complex linked multiform views

System: Pathfinder

https://www.youtube.com/watch?v=aZF7AC8aNXo
Idiom: **Overview-detail views**

- encoding: same
- data: subset shared
- navigation: shared
 - bidirectional linking

- differences
 - viewpoint
 - (size)

- special case: **birds-eye map**

System: **Google Maps**

Idiom: **Overview-detail navigation**

- encoding: same
- data: subset shared
- navigation: shared
 - unidirectional linking
 - select in small overview
 - change extent in large detail view

https://www.highcharts.com/demo/dynamic-master-detail

https://bl.ocks.org/mbostock/34f08d5e11952a80609169b7917d4172
Overview-detail

- multiscale: three viewing levels
 - linked views
 - dynamic filtering
 - tooling: processing
 (modern version: p5js.org)

System: MizBee

https://www.youtube.com/watch?v=86p7brwuz2g
Overview-detail

https://www.youtube.com/watch?v=UcKDbGqHsdE
Flows: R/Shiny

https://gallery.shinyapps.io/TSupplyDemand/
Idiom: **Parallel sets**

[Diagram of parallel sets showing categories such as Survived vs. Perished, Sex (Female vs. Male), Age (Child vs. Adult), and Class (Second Class, Crew, First Class, Third Class).]

https://www.jasondavies.com/parallel-sets/

https://eagereyes.org/parallel-sets
Idiom: Mosaic plots

System: Mondrian

http://www.theusrus.de/blog/understanding-mosaic-plots/
http://www.theusrus.de/Mondrian/
http://www.theusrus.de/blog/making-movies/
Idiom: Small multiples

- encoding: same
- data: none shared
 - different attributes for node colors
 - (same network layout)
- navigation: shared

Coordinate views: Design choice interaction

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td>Same</td>
<td>Redundant</td>
</tr>
<tr>
<td>Different</td>
<td>Multiform</td>
</tr>
</tbody>
</table>

- **why juxtapose views?**
 - benefits: eyes vs memory
 - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
 - costs: display area, 2 views side by side each have only half the area of one view
Why not animation?

• disparate frames and regions: comparison difficult
 – vs contiguous frames
 – vs small region
 – vs coherent motion of group

• safe special case
 – animated transitions
System: **Improvise**

- investigate power of multiple views
 - pushing limits on view count, interaction complexity
 - how many is ok?
 - open research question
- reorderable lists
 - easy lookup
 - useful when linked to other encodings

Partition into views

• how to divide data between views
 – split into regions by attributes
 – encodes association between items using spatial proximity
 – order of splits has major implications for what patterns are visible

• no strict dividing line
 – view: big/detailed
 • contiguous region in which visually encoded data is shown on the display
 – glyph: small/iconic
 • object with internal structure that arises from multiple marks
Partitioning: List alignment

• single bar chart with grouped bars
 – split by state into regions
 • complex glyph within each region showing all ages
 – compare: easy within state, hard across ages

• small-multiple bar charts
 – split by age into regions
 • one chart per region
 – compare: easy within age, harder across states
Partitioning: Recursive subdivision

• split by neighborhood
• then by type
• then time
 – years as rows
 – months as columns
• color by price

• neighborhood patterns
 – where it’s expensive
 – where you pay much more for detached type

Partitioning: Recursive subdivision

- switch order of splits
 - type then neighborhood
- switch color
 - by price variation
- type patterns
 - within specific type, which neighborhoods inconsistent

System: HIVE

Partitioning: Recursive subdivision

- different encoding for second-level regions
 - choropleth maps

Partitioning: Recursive subdivision

• size regions by sale counts
 – not uniformly
• result: treemap

Superimpose layers

- **layer**: set of objects spread out over region
 - each set is visually distinguishable group
 - extent: whole view

- design choices
 - how many layers, how to distinguish?
 - encode with different, nonoverlapping channels
 - two layers achieveable, three with careful design
 - small static set, or dynamic from many possible?
Static visual layering

- foreground layer: roads
 - hue, size distinguishing main from minor
 - high luminance contrast from background
- background layer: regions
 - desaturated colors for water, parks, land areas
- user can selectively focus attention
- “get it right in black and white”
 - check luminance contrast with greyscale view

Superimposing limits

• few layers, but many lines
 – up to a few dozen
 – but not hundreds

• superimpose vs juxtapose: empirical study
 – superimposed for local, multiple for global
 – tasks
 • local: maximum, global: slope, discrimination
 – same screen space for all multiples vs single superimposed

Idiom: Trellis plots

• superimpose within same frame
 – color code by year

• partitioning
 – split by site, rows are wheat varieties

• main-effects ordering
 – derive value of median for group, use to order
 – order rows within view by variety median
 – order views themselves by site median
Dynamic visual layering

• interactive based on selection
• one-hop neighbour highlighting demos: click vs hover (lightweight)

http://mariandoerk.de/edgemaps/demo/
How?

<table>
<thead>
<tr>
<th>Encode</th>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrange</td>
<td>Change</td>
<td>Juxtapose</td>
<td>Filter</td>
</tr>
<tr>
<td>Express</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order</td>
<td>Select</td>
<td>Partition</td>
<td>Aggregate</td>
</tr>
<tr>
<td>Align</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>Navigate</td>
<td>Superimpose</td>
<td>Embed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Map** from categorical and ordered attributes
 - Color:
 - Hue
 - Saturation
 - Luminance
 - Size, Angle, Curvature, ...
 - Shape:
 - +
 - ●
 - ■
 - ▲
 - Motion:
 - Direction, Rate, Frequency, ...

What?

Why?

How?
Credits

• Visualization Analysis and Design (Ch 11, 12)
• Alex Lex & Miriah Meyer, http://dataviscourse.net/