Information Visualization
Midterm Review

Tamara Munzner
Department of Computer Science
University of British Columbia

Lect 16, Mar 5 2020

https://www.cs.ubc.ca/~tmm/courses/436V-20
Schedule

• phase change
 – phase 1 done: no more D3 videos, quizzes, programming exercises
 – phase 2 starts: project work
 • Milestone 1 due Friday Saturday (11:59pm)
 • foundations exercises continue in parallel

• schedule shift
 – midterm review & survey today
 – shift to Tuesday:
 • Aggregation 1 lecture
 • Foundations 6 release
Final project marks breakdown

• Final project 30% of total
 – breakdown: M1 15%, M2 35%, M3 50%
 – of total: M1 4.5%, M2 10.5%, M3 15%

• Milestone 1
 – Foundations 60% [Sec 1-5]
 – Project Management 15% [Sec 6]
 – Writeup 25% [overall]

• Milestone 2
 – 80% Programming Achievement
 – 5% Project Management
 • (see update 3/4)
 – 15% Writeup

• Milestone 3
 – Programming Achievement 40%
 • includes demo
 – Foundations 40%
 – Writeup 20%
Survey

• mid-semester survey
• anonymous

https://ubc.ca1.qualtrics.com/jfe/form/SV_50zwSEo5DihPzIV

• on socrative, pick true when done
Midterm Review
Midterm material covered

• Topics
 – Intro
 – Data & Task Abstractions
 – Marks & Channels
 – Tables
 – Interactive Views
 – Maps
 – Color

• Assignments
 – F1
 – F2
 – F3
 – F4 (will be returned Wed)
Midterm logistics

• time: 75 min
• materials allowed: one-sided "cheat sheet"
 – one side of 8.5"x11" paper
 – we'll check it when we check your ids
 – no other materials
• bags under desk, phones off and in bag
• do not open exam until told to do so
Midterm scope

- **scope:** emphasis on foundations material
 - What kind of attribute is X? (categorical, ordinal, quantitative)
 - What kind of dataset is X? (table, network, spatial)
 - What channels are in use in this visual encoding?
 - Map this domain-language description of tasks and data into abstractions
 - Analyze this existing visualizations by breaking down into marks and channels
 - Critique suitability of this existing visual encoding for abstract task+data combination
 - including scalability assessment for #items, #attributes, # levels within an attribute
 - Propose appropriate visual encoding for task+data combination
 - and provide rationale to justify your design choices versus key alternatives
Midterm scope

• scope: emphasis on foundations material
 – How is spatial position being used to arrange data?
 • express values
 • separate, order, align
 • use given spatial data
 – Discuss tradeoffs between major visual encoding choices
 • choropleth vs symbol maps vs cartograms for maps
 • rectilinear vs radial vs parallel layouts
Subtopics

– Nested model
 • four levels: domain, abstraction, idiom, algorithm

– Data
 • items vs attributes
 • attribute types: categorical, ordered, quantitative
 • dataset types: tables, networks, spatial

– Tasks
 • action-target pairs
 • query: one/sum/all

– Marks and Channels
 • channel types (magnitude vs identity)
 • accuracy, discriminability, separability, popout
 • perceptual system mostly operates with relative judgements, not absolute
Subtopics

– Interactive Views
 • selection and highlighting strategies
 • navigation strategies
 • types of multiple views: multiform, overview/detail same encoding, overview/detail multiform, small multiples
 • strengths and weaknesses of juxtapose vs superimpose
 • impact of partitioning strategies

– Color
 • channel characteristics for hue, saturation, value
 • sequential vs diverging for quantitative attributes
 • univariate vs bivariate
 • color deficiency: nature of problem and strategies to address it
Nested model: Four levels of visualization design

• **domain situation**
 – who are the target users?

• **abstraction**
 – translate from specifics of domain to vocabulary of visualization
 • **what** is shown? data abstraction
 • **why** is the user looking at it? task abstraction
 – often must transform data, guided by task

• **idiom**
 – **how** is it shown?
 • **visual encoding** idiom: how to draw
 • **interaction** idiom: how to manipulate

• **algorithm**
 – efficient computation
Data and Dataset Types

- **Data Types**
 - Items
 - Attributes
 - Links
 - Positions
 - Grids

- **Dataset Availability**
 - Static
 - Dynamic

Attributes

- **Attribute Types**
 - Categorical
 - Ordered
 - Quantitative

Ordering Direction

- Sequential
- Diverging
- Cyclic

Dataset Types

- **Tables**
- **Networks & Trees**
- **Fields**
- **Geometry**
- Clusters, Sets, Lists

What?

- Datasets
- What?
- Attributes
- Why?
- How?
Items & Attributes

• item: individual entity, discrete
 – eg patient, car, stock, city
 – "independent variable"

• attribute: property that is measured, observed, logged...
 – eg height, blood pressure for patient
 – eg horsepower, make for car
 – "dependent variable"

 attributes: name, age, shirt size, fave fruit

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Shirt Size</th>
<th>Favorite Fruit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>8</td>
<td>S</td>
<td>Apple</td>
</tr>
<tr>
<td>Basil</td>
<td>7</td>
<td>S</td>
<td>Pear</td>
</tr>
<tr>
<td>Clara</td>
<td>9</td>
<td>M</td>
<td>Durian</td>
</tr>
<tr>
<td>Desmond</td>
<td>13</td>
<td>L</td>
<td>Elderberry</td>
</tr>
<tr>
<td>Ernest</td>
<td>12</td>
<td>L</td>
<td>Peach</td>
</tr>
<tr>
<td>Fanny</td>
<td>10</td>
<td>S</td>
<td>Lychee</td>
</tr>
<tr>
<td>George</td>
<td>9</td>
<td>M</td>
<td>Orange</td>
</tr>
<tr>
<td>Hector</td>
<td>8</td>
<td>L</td>
<td>Loquat</td>
</tr>
<tr>
<td>Ida</td>
<td>10</td>
<td>M</td>
<td>Pear</td>
</tr>
<tr>
<td>Amy</td>
<td>12</td>
<td>M</td>
<td>Orange</td>
</tr>
</tbody>
</table>

item: person
Attribute types

• which classes of values & measurements?

• categorical (nominal)
 – compare equality
 – no implicit ordering

• ordered
 – ordinal
 • less/greater than defined
 – quantitative
 • meaningful magnitude
 • arithmetic possible
Data abstraction: Three operations

- translate from domain-specific language to generic visualization language
- identify dataset type(s), attribute types
- identify cardinality
 - how many items in the dataset?
 - what is cardinality of each attribute?
 - number of levels for categorical data
 - range for quantitative data
- consider whether to transform data
 - guided by understanding of task
• \{action, target\} pairs
 – discover distribution
 – compare trends
 – locate outliers
 – browse topology
Marks: Constrained vs encodable

• math view: geometric primitives have dimensions

 ➔ Points ➔ Lines ➔ Areas

 0D
 ➔ ➔ ➔

 1D
 ➔ ➔ ➔

 2D

• constraint view: mark type constrains what else can be encoded
 – points: 0 constraints on size, can encode more attributes w/ size & shape
 – lines: 1 constraint on size (length), can still size code other way (width)
 – areas: 2 constraints on size (length/width), cannot size code or shape code
 • interlocking: size, shape, position

• quick check: can you size-code another attribute, or is size/shape in use?
Channels: Rankings

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes
- Spatial region
- Color hue
- Motion
- Shape

- **expressiveness**
 - match channel and data characteristics
- **effectiveness**
 - channels differ in accuracy of perception
- **distinguishability**
 - match available levels in channel w/ data

www.cs.ubc.ca/~tmm/talks.html#vad20alum
Channel effectiveness

• accuracy: how precisely can we tell the difference between encoded items?
• discriminability: how many unique steps can we perceive?
• separability: is our ability to use this channel affected by another one?
• popout: can things jump out using this channel?
Separability vs. Integrality

Position
+ Hue (Color)

2 groups each
Fully separable

Size
+ Hue (Color)

2 groups each
Some interference

Width
+ Height

3 groups total: integral area
Some/significant interference

Red
+ Green

4 groups total: integral hue
Major interference
Grouping

- containment
- connection

Marks as Links

- **Containment**
- **Connection**

Identity Channels: Categorical Attributes

- **Spatial region**
- **Color hue**
- **Motion**
- **Shape**

- **Proximity**
 - same spatial region

- **Similarity**
 - same values as other categorical channels
How?

<table>
<thead>
<tr>
<th>Encode</th>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrange</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➡ Express</td>
<td>➡ Change</td>
<td>➡ Juxtapose</td>
<td>➡ Filter</td>
</tr>
<tr>
<td>➡ Order</td>
<td>➡ Select</td>
<td>➡ Partition</td>
<td>➡ Aggregate</td>
</tr>
<tr>
<td>➡ Use</td>
<td>➡ Navigate</td>
<td>➡ Superimpose</td>
<td>➡ Embed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Map</th>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>➡ from categorical and ordered attributes</td>
<td>➡ Change</td>
<td>➡ Juxtapose</td>
<td>➡ Filter</td>
</tr>
<tr>
<td>➡ Color</td>
<td>➡ Select</td>
<td>➡ Partition</td>
<td>➡ Aggregate</td>
</tr>
<tr>
<td>➡ Hue</td>
<td>➡ Navigate</td>
<td>➡ Superimpose</td>
<td>➡ Embed</td>
</tr>
<tr>
<td>➡ Saturation</td>
<td>➡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➡ Luminance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➡ Size, Angle, Curvature, ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➡ Shape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➡ Motion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What?

Why?

How?
Arrange tables

Express Values

Separate, Order, Align Regions

Separate, Order, Align

1 Key 2 Keys 3 Keys Many Keys

List Recursive Subdivision

Axis Orientation

Rectilinear Parallel Radial

Layout Density

Dense Space-Filling

List Recursive Subdivision

Rectilinear Parallel Radial

Many Keys

Recursive Subdivision
Manipulate

Change over Time
- Select

Navigate
- Item Reduction
 - Zoom
 - Geometric or Semantic
 - Pan/Translate
 - Constrained

Coordinate views: Design choice interaction

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Subset</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Redundant</td>
<td>Same form, Overview/Detail</td>
</tr>
<tr>
<td></td>
<td>Small Multiples</td>
</tr>
<tr>
<td>Multiform</td>
<td>Multiform, Overview/Detail</td>
</tr>
<tr>
<td></td>
<td>No Linkage</td>
</tr>
<tr>
<td>Different</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Subset</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Small Multiples</td>
</tr>
<tr>
<td></td>
<td>No Linkage</td>
</tr>
</tbody>
</table>
Decomposing color

• first rule of color: do not talk about color!
 – color is confusing if treated as monolithic

• decompose into three channels
 – ordered can show magnitude
 • luminance: how bright
 • saturation: how colorful
 – categorical can show identity
 • hue: what color

• channels have different properties
 – what they convey directly to perceptual system
 – how much they can convey: how many discriminable bins can we use?
Colormaps

- Categorical
 -
- Ordered
 - Sequential
 - Diverging
- Bivariate

How to handle complexity: 4 families of strategies

- **Derive**
 - derive new data to show within view
 - change view over time
 - facet across multiple views
 - reduce items/attributes within single view

- **Manipulate**
 - Change
 - Select
 - Navigate

- **Facet**
 - Juxtapose
 - Partition
 - Superimpose

- **Reduce**
 - Filter
 - Aggregate
 - Embed

• derive new data to show within view
• change view over time
• facet across multiple views
• reduce items/attributes within single view