1 Multiple Views (8%)

For each of the multi-view visualizations below, what type of view coordination is used?

- Overview/Detail, Same Form
- Small Multiples
- Multiform
- Overview/Detail, Multiform
- No Linkage
- Fully Redundant

Justify your choice very briefly, according to two criteria:

- Whether the views share the same visual encoding
- Whether they show the same data, or a subset of the data, or disjoint data

1.1 Gerrymandering

THE SHAPE OF AMERICAN DEMOCRACY 2018


1.2 Taking Measure of Antarctic Terrain

https://earthobservatory.nasa.gov/images/144367/taking-measure-of-antarctic-terrain
1.3 MizBee
https://www.youtube.com/watch?v=86p7brwuz2g

1.4 Figures in the Sky
https://figuresinthesky.visualcinnamon.com/

1.5 Explore Adventure
1.6 Olympic Feathers

https://olympicfeathers.visualcinnamon.com/

1.7 How Much Do I Really Use My Favorite Crutch Word

https://public.tableau.com/profile/lilach.manheim#!/vizhome/AnUm___Analysis/Um___

1.8 Interactive Flight Time Analysis

https://uwdata.github.io/falcon/flights/
2 Sketching Geographic Data (9%)

For each state in the US, you are given an obesity rate (between 20% and 35%). Sketch (really only sketch) three very different ideas how you would encode that information geographically. For each sketch, state at least one advantage and one disadvantage of that approach.

Rubric: 3% each (1% sketch, 1% advantage, 1% disadvantage)

3 Twitter Monitoring Application (59%)

Problem: You work in a design agency which needs to develop a Twitter Monitoring application for the federal election in a country. The goal of the application is to show the sentiment of tweets across candidates, time, and space. Sentiment analysis is the interpretation of the emotional meaning of text, as positive (supportive, e.g. happy) or negative (unsupportive, e.g. angry) or neutral.

Data: You are provided with data extracted by a data processing engine that monitors Twitter and produces the following information at one-minute intervals:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Attribute Type</th>
<th>Cardinality/Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Quantitative key</td>
<td>R: 2019-01-01 to 2020-12-31 C: 365</td>
</tr>
<tr>
<td>Candidate</td>
<td>Categorical key</td>
<td>C: 2</td>
</tr>
<tr>
<td>State</td>
<td>Categorical key</td>
<td>C: 50</td>
</tr>
<tr>
<td>Average sentiment of tweets</td>
<td>Quantitative value</td>
<td>R: -1 to 1</td>
</tr>
<tr>
<td>(over interval since previous timestamp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (# of tweets)</td>
<td>Quantitative value</td>
<td>R: 0 to 500K</td>
</tr>
<tr>
<td>(over interval since previous timestamp)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The time interval is one day. There are 36.5K (365*2*50) items in a tabular dataset. There are also shapefiles for the geographic boundaries of the states.

3.1: Design a visualization that shows all of this information on one screen.
The visualization can be interactive and will probably contain multiple views. It should allow the viewer to answer all of the following questions about each candidate:

- Q1: How has the sentiment for candidate X changed over time in each state?
- Q2: At time point T, compare the sentiments between both candidates in each state.
- Q3: In which states has the sentiment changed so that the most positively discussed candidate flips from one to the other candidate, between time points T1 and T2?
- Q4: What is the distribution of the total volume of tweets across the states at time point T? Over all time?
- Q5: Is the sentiment correlated with the volume of tweets, for either candidate?
- Q6: Are there geographic patterns to the sentiment distributions for the two candidates?

Do not forget to include titles, axis labels or legends as needed! Your sketch can be hand-drawn. It can also be mocked up using Powerpoint, a graphics editor, or wireframe tools, such as Balsamiq.

3.2: Rationale for your design choices
Provide a rigorous rationale for your design decisions. Document the visual encodings you used and why they are appropriate for the data and tasks that the visualization should support. Specifically:

- 3.2.1 For each view, what marks and channels did you choose, and why?
- 3.2.2 For each view, what questions are easy vs difficult to answer?

Rubric: 39% Design (6% for each of six question, if handled in sketch. 3% polish: title, axis labels, legends, etc). 24% Rationale (8% marks & channels analysis, 8% marks & channels rationale, 8% questions-view analysis).

4 Color Channels (4%)
What color channels are used for each row?

![Color Channels](image)

Rubric: 1% each example

5 Design Color Palettes (16%)
Use the ColorBrewer (www.colorbrewer.org) tool to help you design a color scheme for each of these four scenarios. For each question, include a screenshot of your result, and briefly explain your choices including diverging vs sequential vs cyclic color palettes for quantitative attributes and the number of distinguishable colors for categorical attributes.

5.1. Design a color scheme that shows as much detail as possible about patterns in consumer spending, where high values show places where people spend more than they make and low values show people living below their means. This visualization will be used in financial literacy classes for high school students.

5.2. Design a color scheme that shows accumulations of toxic waste in that region, to be used in a presentation to policymakers on how to allocate cleanup funds.

5.3. Design a color scheme that allows you to easily distinguish every color in the random section of the map (the lower left). If you have a ten-class map, you should be able to see clearly ten unique colors.
5.4. Design a color scheme to display patterns in preferences for favorite ice cream flavor (from a list of fifteen possibilities). Your audience is a group of marketing managers who are particularly interested in places where preference changes in order to develop strategies for co-marketing ice cream toppings.

*Rubric: 4% for each: 2% color palette, 2% rationale*