Midterm Review

Midterm logistics
- time: 75 min
- materials allowed: open book
- hybrid approach, two parts
 - Canvas multiple choice / true/false questions
 - randomized
- Grading scheme: short answer & sketch questions
- short answer: much better to type, avoid handwriting if at all possible

Midterm scope
- scope: emphasis on foundations material
- 75 points (to help you budget your time, 1 pt ~= 1 minute)
- Analyze these existing visualizations by breaking down into marks and channels
- Critique suitability of this existing visual encoding for abstract task+data combination
-包括 scalability assessment for items, links, 1 level within an attribute
- Propose appropriate visual encoding for task+data combination
- and provide rationale to justify your design choices versus key alternatives

Subtopics
- Interactive Views
- Selection and highlighting strategies
- Interaction
- Types of multiple views: multi-form, overview/detailed same encoding, overview/zoom/multi-form, zoom multiple
- Strengths and weaknesses of juxtapose vs superimpose
- Impact of partitioning strategies
- Color
 - channel characteristics for hue, saturation, value
 - sequential vs diverging for quantitative attributes
 - variation vs brightness
 - color deficiency nature of problem and strategies to address it

Items & Attributes
- item: individual entity, discrete
 - eg patient, car, stock, city
- “Independent variable”
 - attributes: property that is measured, observed, logged...
 - eg height, blood pressure for patient
 - “Dependent variable”
 - eg horsepower, make for car

Attributes types
- which classes of values & measurements?
 - categorical (nominal)
 - compare equality
 - no implicit ordering
 - unordered
 - ordinal
 - least/greatest than defined
 - meaningful magnitudes
 - arithmetically possible
 - quantitative

Data abstraction: Three operations
- translate from domain-specific language to generic visualization language
- identify dataset(s), attribute types
- identify cardinality
 - how many items in the dataset?
 - what is cardinality of each attribute?
 - number of levels for categorical data
 - range for quantitative data
 - consider whether to transform data
 - guided by understanding of task
Analyze
Produce
Consume
Discover
tag
Compare
Present
Locate
Lookup
Actions
Link marks: Connection and containment
• marks as links (vs. nodes)
– common case in network drawing
– 1D case:
– Lines Areas
Containment Connection
Marks As Items/nodes
Marks As Links
Points Lines Areas
Containment Connection
Embed: Focus+Context
• combine information
within single view
• elide
– selectively filter and aggregate
– superimpose layer
– local lens
– distortion design choices
– region shape: radial, rectilinear, complex
– how many regions: one, many
– region extents: local, global
– intersection metaphor

How to handle complexity: 4 families of strategies

Three kinds of network visual encodings

Node-link vs. matrix comparison

Distortion costs and benefits

• benefits
 – combine focus and context
 – information in single view
• costs
 – length comparison impaired
 – network/tree topology
 – comparison unfeasible
 – connection, containment
 – effects of distortion unclear if original structure unfamiliar
 – object constancy/tracking
 – maps impaired

Tree drawing idioms comparison

• data shown
 – link relationships
 – tree depth
 – sibling order
• design choices
 – connection vs containment
 – link marks
 – rectilinear vs radial layout
 – spatial position channels
 – considerations
 – redundant? arbitrary?
 – information density?
• visual design space
 – consider where to fit labels!

Rules of Thumb Summary

• No unjustified 3D
 – Power of the plane
 – Disparity of depth
 – Occlusion hides information
 – Perspective distortion dangers
 – Tilted text isn’t legible
• No unjustified 2D
 – Eyeball memory
 – Resolution over immersion
• Overview first, zoom and filter, details on demand
• Responsiveness is required
• Function first, form next

Link marks: Connection and containment

• marks as links (vs. nodes)
 – common case in network drawing
 – 1D case:
 – ac all node-link diagrams
 – emphasizes topology, path tracing
 – networks and trees
 – 2D case containment
 – ac all containment variants
 – emphasizes attribute values at leaves (size coding)
 – only trees

Node-Link Diagrams

Tree Depth

Rules of Thumb Summary

• No unjustified 3D
 – Power of the plane
 – Disparity of depth
 – Occlusion hides information
 – Perspective distortion dangers
 – Tilted text isn’t legible
• No unjustified 2D
 – Eyeball memory
 – Resolution over immersion
• Overview first, zoom and filter, details on demand
• Responsiveness is required
• Function first, form next

Node-link vs. matrix comparison

• node-link diagram strengths
 – topology understanding, path tracing
 – intuitive, flexible, no training needed
• adjacency matrix strengths
 – focus on edges rather than nodes
 – layout straightforward (rendering needed)
 – predictability, scalability
 – some topology tasks trainable
• empirical study
 – node-link best for small networks
 – matrix best for large networks
 – if tasks don’t involve path tracing!

http://www.michaelmcguffin.com/courses/vis/patternsInAdjacencyMatrix.png