Information Visualization
Midterm Review - Updates

Tamara Munzner
Department of Computer Science
University of British Columbia

Week 11 async lecture, Jan 2021

https://www.students.cs.ubc.ca/~cs-436v/21Jan/
Midterm logistics UPDATED

• time: 75 min content, 5 min image upload
 – 75 points (to help you budget your time, 1 pt ~= 1 minute)
 – 5 extra minutes for image upload
 – materials allowed: open book/notes, but no communication with other people

• you will take exam entirely within Canvas
 – multiple choice & true/false questions (randomized)
 – also short answer enter & image upload within Canvas
 • we export to Gradescope, so it's not your problem to switch platforms in the middle
 • short answer: much much better to type, avoid hand writing if at all possible
 • sketches (can include annotations): sketch on paper and take picture, or sketch on computer
 – hardcopy: use blank paper, one sheet per question, take picture & upload
 – softcopy: use drawing tools and text editing tools of your choice, & copy/paste
Midterm material covered

• Topics
 – Intro
 – Data & Task Abstractions
 – Marks & Channels
 – Multivariate Tables
 – Interactive Views
 – Maps
 – Color
 – Aggregation
 – Networks & Trees
 – Rules of Thumb

• Assignments
 – F1
 – F2
 – F3
Subtopics UPDATED

– Multivariate Tables
 • how many keys?
 • express values vs separate, order, align regions
 • rectilinear vs radial vs parallel axes
 • information-dense layouts

– Maps
 • thematic map types: choropleth, symbol, cartogram, dot density
Multivariate Tables
Arrange tables

- Express Values
- Separate, Order, Align Regions
 - Separate
 - Order
 - Align
- Axis Orientation
 - Rectilinear
 - Parallel
 - Radial
- Layout Density
 - Dense
- 1 Key
 - List
- 2 Keys
 - Matrix
Keys and values

- **key**
 - independent attribute
 - used as unique index to look up items
 - simple tables: 1 key
 - multidimensional tables: multiple keys

- **value**
 - dependent attribute, value of cell

- classify arrangements by key count
 - 0, 1, 2, ...

- **List**
- **Matrix**

- **Tables**

- **Multidimensional Table**

- **Networks**
 - Link
 - Node (item)

- **Trees**
 - Fields (Continuous)
 - Attributes (columns)
 - Value in cell

- **Geometry** (Spatial)
 - Position

- **Dataset Types**

- **Arrange Tables**
- **Express Values**
- **Separate, Order, Align Regions**
- **Axis Orientation**
- **Layout Density**
- **Dense**
- **Space-Filling**
Some keys: Categorical regions

- **Separate**: contiguous bounded areas distinct from each other
 - using space to *separate* (proximity)
 - following expressiveness principle for categorical attributes

- **Order** and **Align** regions

- **regions**: contiguous bounded areas distinct from each other
 - using space to *separate* (proximity)
 - following expressiveness principle for categorical attributes

- **use ordered attribute to order and align regions**
Orientation limitations

• rectilinear: scalability wrt #axes
 • 2 axes best, 3 problematic, 4+ impossible

• parallel: unfamiliarity, training time

• radial: perceptual limits
 – polar coordinate asymmetry
 • angles lower precision than length
 • nonuniform sector width/size depending on radial distance
 – frequently problematic
 • but sometimes can be deliberately exploited!
 – for 2 attrs of very unequal importance

Maps
Key question:

Does the given spatial/geographic data matter for my task?

» *Position* is the most effective visual channel

 » we don’t want to waste it for non-relevant geographic spatial information

» A geo map is not always the best or only solution.
Geographic Map

Interlocking marks

- shape coded
- area coded
- position coded

• cannot encode another attribute with these channels, they're "taken"
Thematic maps

• show spatial variability of attribute ("theme")
 – combine geographic / reference map with (simple, flat) tabular data
 – join together
 • region: interlocking area marks (provinces, countries with outline shapes)
 – also could have point marks (cities, locations with 2D lat/lon coords)
 • region: categorical key attribute in table
 – use to look up value attributes

• major idioms
 – choropleth
 – symbol maps
 – cartograms
 – dot density maps
Choropleth map: Pros & cons

• pros
 – easy to read and understand
 – well established visualization (no learning curve)
 – data is often collected and aggregated by geographical regions

• cons
 – most effective visual variable used for geographic location
 – visual salience depends on region size, not true importance wrt attribute value
 • large regions appear more important than small ones
 – color palette choice has a huge influence on the result
Symbol map: Pros & cons

• pros
 – somewhat intuitive to read and understand
 – mitigate problems with region size vs data salience
 • marks: symbol size follows attribute value
 • glyphs: symbol size can be uniform

• cons
 – possible occlusion / overlap
 • symbols could overlap each other
 • symbols could occlude region boundaries
 – complex glyphs may require explanation / training
Cartogram: Pros & cons

• pros
 – can be intriguing and engaging
 – best case: strong and surprising size disparities

• cons
 – require substantial familiarity with original dataset & use of memory
 • compare distorted marks to memory of original marks
 • mitigation strategies: transitions or side by side views
 – major distortion is problematic
 • may be aesthetically displeasing
 • may result in unrecognizable marks
 – difficult to extract exact quantities
Dot density maps: Pros and cons

• pros
 – straightforward to understand
 – avoids choropleth non-uniform region size problems

• cons
 – challenge: normalization
 • many dot maps primarily show population density
 (with which the target variable is correlated)
 instead of the effect of interest
 • same challenge as choropleths
 – perceptual disadvantage:
 difficult to extract quantities
 – performance disadvantage:
 rendering many dots can be slow