Centroid Decomposition

Jason Chiu

February 11, 2015
Overview

1. The Problem
 - Problem description
 - Solution
 - Proof of correctness
 - Time complexity

2. Centroid Decomposition

3. Example Problem
Let T be an undirected tree. Find a node v such that if we delete v from the tree, splitting it into a forest, each of the trees in the forest would all have fewer than half the number of vertices from the original tree.
Let T be the given undirected tree with n nodes.

1. Root the tree arbitrarily

2. Perform DFS to obtain, for every node v, the size of the subtree rooted at v: $S(v) = 1 + \sum_i S(adj[v][i])$

3. For each node v, check if
 $\max(n - S(v), S(adj[v][0]), S(adj[v][1]), \cdots) < n/2$
 halt and return v if this is satisfied

Note: we can combine steps 2 and 3 into a single DFS.
Proof of correctness

Theorem. There is always a solution

1. If the root works, great
2. If the root doesn’t work, then we can recurse on the lop-sided subtree, because the other piece must be $< n/2$
3. Maximum subtree size gets smaller, so it must terminate eventually

Theorem. The algorithm produces a solution
This is obvious from the description of the algorithm.
$O(n)$ to compute the size of subtrees, and $O(n)$ to find the correct node, because the cost of the node search is $\sum_{v \in V} (1 + \text{deg}(v)) = 2n - 1$. Therefore, the time complexity is $O(n)$.
Easy! But why?
The solution of the previous problem finds a node v which we shall call a \textbf{centroid} of the tree. Now what happens if we apply the algorithm recursively to each subtree split by the centroid?
We get a tree of centroids, which we shall call the **centroid decomposition** of the tree.

Runtime is $O(n \log n)$ because we will recurse at most $\log_2 n$ times.

Notice this decomposition has log n depth, so we can essentially do divide and conquer on the tree!
Questions?
Given a weighted tree with N nodes, find the minimum number of edges in a path of length K, or return -1 if such a path does not exist.

- $1 \leq N \leq 200000$
- $1 \leq \text{length}(i,j) \leq 1000000$ (integer weights)
- $1 \leq K \leq 1000000$
Brute force solution:

- For every node, perform DFS to find distance and number of edges to every other node
- Time complexity: $O(n^2)$

Obviously fails because $N = 200000$.
Better solution:

- Perform centroid decomposition to get a “tree of subtrees”
- Start at the root of the decomposition, solve the problem for each subtree as follows
 - Solve the problem for each “child tree” of the current subtree
 - Perform DFS from the centroid on the current subtree to compute the minimum edge count for paths that include the centroid
 - Two cases: centroid at the end or in the middle of path
 - Use a timestamped array of size 1000000 to keep track of which distances from centroid are possible and the minimum edge count for that distance
 - Take the minimum of the above two

Time complexity: $O(n \log n)$
The End